Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

СЕРА

Большая советская энциклопедия (БЭС)
(лат. Sulfur)
        S, химический элемент VI группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06. Природная С. состоит из четырёх стабильных изотопов: 32S (95,02%), 33S (0,75%), 34S (4,21%), 36S (0,02%). Получены также искусственные радиоактивные изотопы 31S (T1/2 = 2,4 сек), 35S (T1/2 = 87,1 cym), 37S (T1/2 = 5,04 мин).
         Историческая справка. С. в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. Она упоминается в Библии, поэмах Гомера и др. С. входила в состав «священных» курений при религиозных обрядах; считалось, что запах горящей С. отгоняет злых духов. С. давно стала необходимым компонентом зажигательных смесей для военных целей, например «греческого огня» (10 в. н. э.). Около 8 в. в Китае стали использовать С. в пиротехнических целях. Издавна С. и её соединениями лечили кожные заболевания. В период арабской алхимии возникла гипотеза, согласно которой С. (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу С. установил А. Л. Лавуазье и включил её в список неметаллических простых тел (1789). В 1822 Э. Мичерлих обнаружил аллотропию С.
         Распространение в природе. С. относится к весьма распространённым химическим элементам (кларк 4,7·10-2); встречается в свободном состоянии (Сера самородная) и в виде соединений — сульфидов, полисульфидов, сульфатов (см. Сульфиды природные, Сульфаты природные, Сульфидные руды). Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов С., образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов С. (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H2S и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации С. — она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9·10-2%), подземных водах, в озёрах и солончаках. В глинах и сланцах С. в 6 раз больше, чем в земной коре в целом, в гипсе — в 200 раз, в подземных сульфатных водах — в десятки раз. В биосфере происходит круговорот С.: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником С. в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие SO2 и H2S. Хозяйственная деятельность человека ускорила миграцию С.; интенсифицировалось окисление сульфидов.
         Физические и химические свойства. С. — твёрдое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая -S лимонно-жёлтого цвета, плотность 2,07 г/см3, tпл 112,8 °С, устойчива ниже 95,6°С; моноклинная -S медово-жёлтого цвета, плотность 1,96 г/см3, tпл 119,3 °С, устойчива между 95,6 °С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S8 с энергией связи S — S 225,7 кдж/моль.
         При плавлении С. превращается в подвижную жёлтую жидкость, которая выше 160 °С буреет, а около 190 °С становится вязкой тёмно-коричневой массой. Выше 190°С вязкость уменьшается, а при 300 °С С. вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °С кольца S8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °С уменьшает среднюю длину таких цепей.
         Если расплавленную С., нагретую до 250—300 °С, влить тонкой струей в холодную воду, то получается коричнево-жёлтая упругая масса (пластическая С.). Она лишь частично растворяется в сероуглероде, в осадке остаётся рыхлый порошок. Растворимая в CS2 модификация называется -S, а нерастворимая — -S. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую -S. tkип С. 444,6 °С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул S8, существуют также S6, S4 и S2. При дальнейшем нагревании крупные молекулы распадаются, и при 900°С остаются лишь S2, которые приблизительно при 1500°С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров С. получается устойчивая ниже — 80°С пурпурная модификация, образованная молекулами S2.
         С. — плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и др.).
         Конфигурация внешних электронов атома S 3s23p 4. В соединениях С. проявляет степени окисления -2, +4, +6.
         С. химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением N2, I2, Au, Pt и инертных газов. СO2 на воздухе выше 300 °С образует окислы: SO2 — Сернистый ангидрид и SO3 — Серный ангидрид, из которых получают соответственно сернистую кислоту (См. Сернистая кислота) и серную кислоту (См. Серная кислота), а также их соли Сульфиты и Сульфаты (см. также Тиокислоты и Тиосульфаты). Уже на холоду S энергично соединяется с F2, при нагревании реагирует с Cl2 (см. Серы фториды, Серы хлориды); с бромом С. образует только S2Br2, иодиды серы неустойчивы. При нагревании (150 — 200 °С) наступает обратимая реакция с H2 с получением сернистого водорода (См. Сернистый водород). С. образует также многосернистые водороды общей формулы H2Sx, т. н. сульфаны. Известны многочисленные Сераорганические соединения.
         При нагревании С. взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800—900 °С пары С. реагируют с углеродом, образуя Сероуглерод CS2. Соединения С. с азотом (N4S4 и N2S5) могут быть получены только косвенным путём.
         Получение. Элементарную С. получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. О способах добычи С. см. Серные руды. Источник сернистого водорода для производства С. — коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки H2S; наибольшее значение имеют следующие: 1) H2S извлекают из газов раствором моногидротиоарсената натрия:
         Na2HAsS2 + H2S = Na2HAsS3O + H2O.
        Затем продувкой воздуха через раствор осаждают С. в свободном виде:
         NaHAsS3O + 1/2 O2 = Na2HAsS2O2 + S.
        2) H2S выделяют из газов в концентрированном виде. Затем его основная масса окисляется кислородом воздуха до С. и частично до SO2. После охлаждения H2S и образовавшиеся газы (SO2, N2, CO2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:
         2H2S + SO2 = 3S + 2H2O.
         В основе получения С. из SO2 лежит реакция восстановления его углём или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.
         В 1972 элементарной С. в мире (без социалистических стран) произведено 32,0 млн. т; основная масса её добывалась из природных самородных руд. В 70-е гг. 20 в. первостепенное значение (в связи с открытием крупных месторождений сероводородсодержащих топливных газов) приобретают методы получения С. из H2S.
         Сорта С. Выплавленная непосредственно из серных руд С. называется природной комовой; полученная из H2S и SO2 — газовой комовой. Природная комовая С., очищенная перегонкой, называется рафинированной. Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы — черенковой С. При конденсации С. ниже точки плавления на стенках конденсационных камер образуется мелкий порошок С. — серный цвет. Особо высокодисперсная С. носит название коллоидной.
         Применение. С. применяется в первую очередь для получения серной кислоты: в бумажной промышленности (для получения сульфитцеллюлозы); в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в резиновой промышленности (вулканизующий агент); в производстве красителей и светящихся составов; для получения чёрного (охотничьего) пороха; в производстве спичек.
         И. К. Малина.
         В медицинской практике применение С. основано на её способности при взаимодействии с органическими веществами организма образовывать сульфиды и пентатионовую кислоту, от присутствия которых зависят кератолитические (растворяющие — от греч. keras — рог и lytikos — растворяющий), противомикробные и противопаразитарные эффекты. С. входит в состав Вилькинсона мази (См. Вилькинсона мазь) и других препаратов, применяемых для лечения чесотки. Очищенную и осажденную С. употребляют в мазях и присыпках для лечения некоторых кожных заболеваний (себорея, псориаз и др.); в порошке — при глистных инвазиях (энтеробиоз); в растворах — для пиротерапии (См. Пиротерапия) прогрессивного паралича и др.
         Сера в организме. В виде органических и неорганических соединений С. постоянно присутствует во всех живых организмах и является важным биогенным элементом (См. Биогенные элементы). Её среднее содержание в расчёте на сухое вещество составляет: в морских растениях около 1,2%, наземных — 0,3%, в морских животных 0,5—2%, наземных — 0,5%. Биологическая роль С. определяется тем, что она входит в состав широко распространённых в живой природе соединений: аминокислот (Метионин, Цистеин), и следовательно белков и пептидов; коферментов (кофермент (См. Коферменты) А, Липоевая кислота), витаминов (Биотин, Тиамин), Глутатиона и другие Сульфгидрильные группы (— SH) остатков цистеина играют важную роль в структуре и каталитическая активности многих ферментов. Образуя дисульфидные связи (— S — S —) внутри отдельных полипептидных цепей и между ними, эти группы участвуют в поддержании пространственной структуры молекул белков. У животных С. обнаружена также в виде органических сульфатов и сульфокислот — хондроитинсерной кислоты (См. Хондроитинсерные кислоты) (в хрящах и костях), таурохолиевой кислоты (в жёлчи), Гепарина, Таурина. В некоторых железосодержащих белках (например, ферродоксинах) С. обнаружена в форме кислотолабильного сульфида. С. способна к образованию богатых энергией связей в макроэргических соединениях (См. Макроэргические соединения).
         Неорганические соединения С. в организмах высших животных обнаружены в небольших количествах, главным образом в виде сульфатов (в крови, моче), а также роданидов (в слюне, желудочном соке, молоке, моче). Морские организмы богаче неорганическими соединениями С., чем пресноводные и наземные. Для растений и многих микроорганизмов сульфат (SO42-) наряду с фосфатом и нитратом служит важнейшим источником минерального питания. Перед включением в органические соединения С. претерпевает изменения в валентности и превращается затем в органическую форму в своём наименее окисленном состоянии; т. о. С. широко участвует в окислительно-восстановительных реакциях в клетках. В клетках сульфаты, взаимодействуя с аденозинтрифосфатом (АТФ), превращаются в активную форму — аденилилсульфат:
         0135388790.tif
        
         Катализирующий эту реакцию фермент — сульфурилаза (АТФ: сульфат — адснилилтрансфераза) широко распространён в природе. В такой активированной форме сульфонильная группа подвергается дальнейшим превращениям — переносится на др. акцептор или восстанавливается.
         Животные усваивают С. в составе органических соединений. Автотрофные организмы получают всю С., содержащуюся в клетках, из неорганических соединений, главным образом в виде сульфатов. Способностью к автотрофному усвоению С. обладают высшие растения, многие водоросли, грибы и бактерии. (Из культуры бактерий был выделен специальный белок, осуществляющий перенос сульфата через клеточную мембрану из среды в клетку.) Большую роль в круговороте С. в природе играют микроорганизмы — Десульфурирующие бактерии и Серобактерии. Многие разрабатываемые месторождения С. — биогенного происхождения. С. входит в состав антибиотиков (Пенициллины, Цефалоспорины); её соединения используются в качестве радиозащитных средств (См. Радиозащитные средства), средств защиты растений.
         Л. И. Беленький.
        
         Лит.: Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971; Природная сера, под ред. М. А. Менковского, М., 1972; Некрасов Б. В., Основы обшей химии, 3 изд., т. 1, М., 1973; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Янг Л., Моу Д ж., Метаболизм соединений серы, пер. с англ., М., 1961; Горизонты биохимии, пер. с англ., М., 1964; Биохимия растений, пер. с англ., М., 1968, гл. 19; Торчинский Ю. М., Сульфгидрильные и дисульфидные группы белков, М., 1971; Дегли С., Никольсон Д., Метаболические пути, пер. с англ., М., 1973.
Мультимедийная энциклопедия
S (sulfur), неметаллический химический элемент, член семейства халькогенов (O, S, Se, Te и Po) - IVA подгруппы периодической системы элементов. Cера, как и многие ее применения, известны с далекой древности. А.Лавуазье утверждал, что сера - это элемент. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти. Применение. Около половины ежегодного потребления серы идет на производство таких промышленных химических продуктов, как серная кислота, диоксид серы и дисульфид углерода (сероуглерод). Кроме того, сера широко используется в производстве инсектицидов, спичек, удобрений, взрывчатых веществ, бумаги, полимеров, красок и красителей, при вулканизации каучука. Ведущее место в добыче серы занимают США, страны СНГ и Канада. Распространенность в природе. Сера встречается в свободном состоянии (самородная сера). Кроме того, имеются огромные запасы серы в виде сульфидных руд, прежде всего руд свинца (свинцовый блеск), цинка (цинковая обманка), меди (медный блеск) и железа (пирит). При извлечении металлов из этих руд освобождаются от серы обычно обжигом в присутствии кислорода, при этом образуется диоксид серы(IV), который часто выбрасывается в атмосферу без использования. Кроме сульфидных руд достаточно много серы встречается в виде сульфатов, например, сульфата кальция (гипс), сульфата бария (барит). В морской воде и многих минеральных водах присутствуют растворимые в воде сульфаты магния и натрия. В некоторых минеральных водах встречается сульфид водорода (сероводород). В промышленности серу можно получать как побочный продукт процессов в плавильных, коксовых печах, при нефтепереработке, из топочных или природных газов. Из природных подземных отложений серу добывают, расплавляя ее перегретой водой и доставляя на поверхность сжатым воздухом и насосами. Во фраш-процессе извлечения серы из сероносных отложений на установке в виде концентрических труб, запатентованной Г.Фрашем в 1891, сера получается чистотой до 99,5%. подземных месторождений. Свойства. Сера имеет вид желтого порошка или хрупкой кристаллической массы без запаха и вкуса и нерастворима в воде. Для серы характерны несколько аллотропных модификаций. Наиболее известны следующие: кристаллическая сера - ромбическая (самородная сера, a-S) и моноклинная (призматическая сера, b-S); аморфная - коллоидная (серное молоко) и пластическая; промежуточная аморфно-кристаллическая - сублимированная (серный цвет). СВОЙСТВА СЕРЫ Атомный номер 16 Атомная масса 32,066 Изотопы стабильные 32, 33, 34, 36 нестабильные 31, 35, 37 Температура плавления, ° С 112,8 (a , ромбич.), 119,0 (b , моноклин.) Температура кипения, ° С 444,6 Плотность, г/см3 2,06 (ромбич.), 1,957 (моноклин.) Твердость (по Моосу) 1,5-2,5 Содержание в земной коре, % (масс.) 0,052 Степени окисления -2, +2, +4, +6 (реже -1, 0, +1, +3, +5 ) Кристаллическая сера. Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS2. Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично "срезаны" углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS2. При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера. Некристаллическая сера. Твердая сера существует также в двух некристаллических, аморфных, формах. Коллоидная сера получается при осаждении серы из раствора (например, при кипячении серы с известью) и фильтровании с последующим добавлением хлороводородной кислоты к прозрачному фильтрату. Осадок представляет собой мелкодисперсную белую и хорошо растворимую в CS2 серу. Коллоидную серу используют в медицине как антисептик, слабительное и противопаразитическое средство в виде порошков и мазей. Другая некристаллическая форма - пластическая сера - образуется при резком охлаждении расплава, например, холодной водой. Пластическая сера бывает темнокрасного или коричневого цвета, она каучукоподобна (плотность 2,046 г/см3) и не растворяется в CS2; при хранении становится хрупкой, желтеет и по мере превращения в ромбическую все лучше растворяется в CS2. В дополнение к этим кристаллическим и аморфным формам существует промежуточная форма, известная как серный цвет или сублимированная сера, которая получается конденсацией паров серы, минуя жидкую фазу. Она состоит из мельчайших зерен, имеющих центр кристаллизации и аморфную поверхность. Эта форма медленно и не полностью растворяется в CS2. После обработки аммиаком для очистки от таких примесей, как мышьяк, получается продукт, известный в медицине как промытая сера, которая используется аналогично коллоидной сере. Жидкое состояние. Молекулы серы состоят из замкнутой цепочки восьми атомов (S8). Жидкая сера обладает необычным свойством: с повышением температуры ее вязкость увеличивается. Ниже 160° С сера - типичная жидкость желтоватого цвета, ее состав соответствует формуле S8 и обозначается l-S. С повышением температуры кольцевые молекулы S8 начинают разрываться и соединяться друг с другом, образуя длинные цепи (m-S), цвет жидкой серы становится темнокрасным, вязкость возрастает, достигая максимума при 200-250° С. При дальнейшем повышении температуры жидкая сера светлеет, длинные цепи рвутся, образуя короткие, с меньшей способностью к переплетению, что приводит к меньшей вязкости. Газ. Сера кипит при 444,6° C, образуя оранжево-желтые пары, состоящие преимущественно из молекул S8. С повышением температуры окраска паров переходит в темнокрасную, затем в палевую, а при 650° C в соломенно- желтую. При дальнейшем нагревании молекулы S8 диссоциируют, образуя равновесные формы S6, S4 и S2 при разных температурах. И, наконец, при >1000° С пары состоят практически из молекул S2, а при 2000° С - из одноатомных молекул. Химические свойства. Сера - типичный неметалл. На внешней электронной оболочке у нее шесть электронов, и она легче присоединяет электроны других элементов, чем отдает свои. Со многими металлами реагирует с выделением тепла (например, при соединении с медью, железом, цинком). Она соединяется и почти со всеми неметаллами, хотя не так энергично. Соединения. Диоксид серы образуется при сжигании серы на воздухе, в частности, при обжиге сульфидных руд металлов. Диоксид серы - бесцветный газ с удушающим запахом. Это ангидрид сернистой кислоты, он легко растворяется в воде с образованием сернистой кислоты. Диоксид легко сжижается (т. кип. -10° C) и его хранят в стальных цилиндрах. Диоксид используют в производстве серной кислоты, в холодильных установках, для отбеливания текстиля, древесной массы, соломы, свекловичного сахара, для консервации фруктов и овощей, для дезинфекции, в пивоваренных и пищевых производствах. Сернистая кислота H2SO3 существует только в разбавленных растворах (менее 6%). Это слабая кислота, образующая средние и кислые соли (сульфиты и гидросульфиты). Сернистая кислота - хороший восстановитель, реагируя с кислородом образует серную кислоту. Сернистая кислота находит несколько областей применения, среди которых - обесцвечивание шелка, шерсти, бумаги, древесной массы и аналогичных веществ. Она используется как антисептик и консервант, особенно для предотвращения брожения вина в бочках, для предотвращения ферментации зерна при извлечении крахмала. Кислоту используют и для сохранения продуктов. Наибольшее значение из ее солей имеет гидросульфит кальция Ca(HSO3)2, используемый при переработке древесной щепы в целлюлозу. Триоксид серы SO3 (серный ангидрид), образующий с водой серную кислоту, представляет собой либо бесцветную жидкость, либо белое кристаллическое вещество (кристаллизуется при 16,8° С; т. кип. 44,7° С). Он образуется при окислении диоксида серы кислородом в присутствии соответствующего катализатора (платина, пентаоксид ванадия). Триоксид серы сильно дымит во влажном воздухе и растворяется в воде, образуя серную кислоту и выделяя много тепла. Его используют в производстве серной кислоты и получении синтетических органических веществ. Серная кислота H2SO4. Безводная H2SO4 - бесцветная маслянистая жидкость, растворяет SO3, образуя олеум. Смешивается с водой в любых отношениях. При растворении в воде образуются гидраты с выделением очень большого количества теплоты; поэтому во избежание разбрызгивания кислоты обычно при растворении осторожно, постепенно добавляют кислоту в воду, а не наоборот. Концентрированная кислота хорошо поглощает пары воды и поэтому применяется для осушения газов. По этой же причине она приводит к обугливанию органических веществ, особенно углеводов (крахмала, сахара и т.п.). При попадании на кожу вызывает сильные ожоги, пары разъедают слизистую дыхательных путей и глаз. Серная кислота - сильный окислитель. Конц. H2SO4 окисляет HI, HBr до I2 и Br2 соответственно, уголь - до CO2, серу - до SO2, металлы - до сульфатов. Разбавленная кислота тоже окисляет металлы, стоящие в ряду напряжений до водорода. H2SO4 - сильная двухосновная кислота, образующая средние и кислые соли - сульфаты и гидросульфаты; большинство ее солей растворимы в воде, за исключением сульфатов бария, стронция и свинца, малорастворим сульфат кальция. Серная кислота - один из важнейших продуктов химической промышленности (производящей щелочи, кислоты, соли, минеральные удобрения, хлор). Ее получают главным образом контактным или башенным способом по принципиальной схеме: Большая часть получаемой кислоты идет на производство минеральных удобрений (суперфосфат, сульфат аммония). Серная кислота служит исходным сырьем для получения солей и других кислот, для синтеза органических веществ, искусственных волокон, для очистки керосина, нефтяных масел, бензола, толоуола, при изготовлении красок, травлении черных металлов, в гидрометаллургии урана и некоторых цветных металлов, для получения моющих и лекарственных средств, как электролит в свинцовых аккумуляторах и как осушитель. Тиосерная кислота H2S2O3 структурно аналогична серной кислоте за исключением замены одного кислорода на атом серы. Наиболее важным производным кислоты является тиосульфат натрия Na2S2O3 - бесцветные кристаллы, образующиеся при кипячении сульфита натрия Na2SO3 с серным цветом. Тиосульфат (или гипосульфит) натрия используется в фотографии как закрепитель (фиксаж). Сульфонал (CH3)2C(SO2C2H5)2 - белое кристаллическое вещество, без запаха, слабо растворимое в воде, является наркотиком и используется как седативное и снотворное средство. Сульфид водорода H2S (сероводород) - бесцветный газ с резким неприятным запахом тухлых яиц. Он несколько тяжелее воздуха (плотность 1,189 г/дм3), легко сжижается в бесцветную жидкость и хорошо растворим в воде. Раствор в воде является слабой кислотой с рН ~ 4. Жидкий сероводород используют как растворитель. Раствор и газ широко применяют в качественном анализе для отделения и определения многих металлов. Вдыхание незначительного количества сероводорода вызывает головную боль и тошноту, большие количества или непрерывное вдыхание сероводорода вызывают паралич нервной системы, сердца и легких. Паралич наступает неожиданно, в результате нарушения жизненных функций организма. Монохлорид серы S2Cl2 - дымящая масляная жидкость янтарного цвета с едким запахом, слезоточивая и затрудняющая дыхание. Она дымит во влажном воздухе и разлагается водой, но растворима в сероуглероде. Монохлорид серы - хороший растворитель для серы, иода, галогенидов металлов и органических соединений. Монохлорид используется для вулканизации каучука, в производстве типографской краски и инсектицидов. При реакции с этиленом образуется летучая жидкость, известная как горчичный газ (ClC2H4)2S - токсичное соединение, используемое как боевое химическое отравляющее вещество раздражающего действия. Дисульфид углерода CS2 (сероуглерод) - бледножелтая жидкость, ядовитая и легко воспламеняющаяся. CS2 получают синтезом из элементов в электрической печи. Вещество нерастворимо в воде, имеет высокий коэффициент светопреломления, высокое давление паров, низкую температуру кипения (46° C). Сероуглерод - эффективный растворитель жиров, масел, каучука и резин - широко используют для экстракции масел, в производстве искусственного шелка, лаков, резиновых клеев и спичек, уничтожения амбарных долгоносиков и одежной моли, для дезинфекции почв. См. также <<ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ>>. ЛИТЕРАТУРА Справочник сернокислотчика. М., 1971 Бусев А.И., Симонова Л.Н. Аналитическая химия серы. М., 1975
Современная Энциклопедия
СЕРА (Sulfur), S, химический элемент VI группы периодической системы; атомный номер 16, атомная масса 32,066; относится к халькогенам; неметалл желтого цвета; tпл 110,2шC (a-S) и 115,21шC (b-S). Используется в производстве серной кислоты, сульфитов, красителей и др., для борьбы с вредителями сельскохозяйственных культур, как вулканизующий агент в резиновой промышленности, компонент состава головок спичек, мазей в медицине. Сера известна с древнейших времен.
В. Д. Гладкий. Древний мир. Энциклопедический словарь
    СЕРА — в чистом виде впервые была найдена на Сицилии, о. Мелос, на Липарии (Эолийские о-ва) и о. Эвбея (там, где ныне серные ванны). Наряду с серным мышьяком, дающим красную краску, С. добыв. греками и карфагенянами в рудниках. Работа на серных копях вредна для здоровья. Об этом знали в Рим. империи и в виде наказ. посылали туда провинивш. рабов. Потребн. в С. была огромна: в текстил. деле ее использ. для отбелив. тканей, в виноделии — для осветл. вина, сел. жители — для уничтож. вред. насекомых, стеклодувы — для склеив. стекл. деталей. С. шла на изготовл. черной эмали при работе с металлом. Шерст. нити, пропит. С., служили фитилями для ламп. Дезинфиц. св-во С. было открыто уже на Др. Востоке. Греки и римляне также стали примен. ее в медицине в составе мазей и пластырей при лечении людей и животных. Продавали самород. С. (в виде порошка) и переплавл. (в виде плиток).
Медицинская энциклопедия
(Sulfur; S)
химический элемент VI группы периодической системы Д. И. Менделеева; атомный номер 16, атомная масса 32,06; твердое кристаллическое вещество желтого цвета, нерастворимое в воде; используется при изготовлении некоторых лекарственных средств; соединения С. широко распространены в живой природе.
Орфографический словарь Лопатина
с`ера, с`ера, -ы
Словарь Даля
жен. одно из простых (несложных, неразлагаемых) веществ, плавкое и сильно горючее ископаемое вулканического рожденья; как товар, зовут ее: сера горючая. Порох делается из селитры и серы, с углем. Черенковая сера, отлитая палочками.
Сера, серка, ·*вост. и ·*сиб. мастика ·*южн. топленая смола лиственицы, которую жуют, заобычай, как лакомство, и чтоб зубы белели. Льнет, как сера (смола) к сучку (к стене).
Мылистое вещество (щелочно-жирное), отделяемое природой в ушном проходе. Нередко люди глохнут от скопа серы, заткнувшей ухо пробкою. Сера в ушах кипит, нос залегает, к ненастью. Серный, к сере относящийся. Серный цвет, дух, вкус. Серный цвет, мелкий порошок, от сухой перегонки серы. Серное молоко, серный бус, пыль, добываемая из раствора. Спорный ·заводск. - колчедан, соединенье металла с серою, более известен железный серный колчедан. - блеск, - обманка, ископаемые, сродные колчеданам. -печень, сплав поташа с серой. Серная спичка или серянка, серенка. ·*новг. серянка, ·*архан. серник, -ничек, лучинка, обмокнутая кончиком в растопленную серу, для добычи огня.
Серник, ворга, накипь смолы на сосне, ели, самотеком; накипь смолы на живом дереве.
Серянка, напитанная серою нитка, род штопина, фитиля, для поджига зарядов, при рвании камней.
Серянка, первый поток смолы, при сидке, вишневого цвета, лучшая.
Серянка или серница, плошка, латка, черепок, в котором топят серу.
Серянка и серница, серосмолье, засмолок, пророст, или место в хвойном дереве, из которого сочится смола; серница нередко попадается и внутри пня, оказывается только при распилке и сочить смолу много лет, даже в поделках. Сереница, -ничка, серенка ·*камч., ·*прим.-охот. деревянное, внутри полое сердечко, налитое серою; носится в огнивице, для добычи огня. Серяной, серный. Серяные слепки медалей. Серяной вкус, запах. Серная кислота, соединенье серы с кислородом, сгоревшая сера. Различают несколько степеней окисленья: серноватистый, -ватый, серистый или сернистый и серный; в кислотах: серноватистокислый, серноватокислый, сернистокислый, сернокислый. Серистый вообще немного серы содержащий: серистый свинец, свинцовый блеск. Сернистый водород, - углерод, химическое соединенье этих веществ. Сероводородный газ, то же, что сернистый водород. Серить спички, нитку, серенить ·*сев. макать в жидкую серу; натирать серным составом. -ся, страд. Серенье, действие по гл. Серножелтый, желтобелесоватый, бледножелтый, или ·стар. серогорячий. Опашень, серогорячий цвет, Выходн. кн.
Словарь Ожегова
С’ЕРА, -ы, жен.
1. Химический элемент жёлтое горючее вещество, применяемое в технике и медицине.
2. Жёлтое жирное вещество, образующееся в ушном канале.
прил. серный, -ая, -ое.
Словарь Ушакова
С’ЕРА, серы, мн. нет, ·жен.
1. Металлоид, легко воспламеняющееся вещество желтоватого или сероватого цвета, применяемое в медицине и технике.
2. Жирное густое вещество желтого цвета, образующееся на стенках ушного канала (·разг. ). Скопление серы.
Толковый словарь Ефремовой
[сера]
ж.
1) Химический элемент, легко воспламеняющееся вещество желтого или сероватого цвета.
2) разг. Жирное густое вещество желтого цвета, образующееся на стенках ушного канала.
3) местн. Смола, выделяющаяся из хвойных деревьев.
Научнотехнический Энциклопедический Словарь
СЕРА (обозначается S), химический элемент VI группы ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ, неметалл, известный с древности. Встречается в природе как в виде отдельного элемента, так и в виде сульфидных минералов, таких как ГАЛЕНИТ и ПИРИТ, и сульфатных минералов, таких как гипс. Основном промышленным источником серы является встречающаяся в природе самородная сера, добываемая посредством ПРОЦЕССА ФРАША. Используется в ВУЛКАНИЗАЦИИ каучука, а также в производстве СЕРНОЙ КИСЛОТЫ, лекарственных препаратов, спичек, красителей, фунгицидов, инсектицидов и удобрений. Свойства: атомный номер 16, атомная масса 32,064; плотность 2,07; температура плавления 112,8 °С, температура кипения 444,7 °С; наиболее распространенный изотоп 32S (95,1%).
Встречающаяся в природе сера добывается из горных пород посредством процесса, известного как процесс Фра-ша. Бурится скважина (1) до богатых серой участков (2). В скважину опускается специальная головка (3). Сначала в горную породу под давлением накачивается вода с температурой 155°С (4) для плавления серы. После воды подается сжатый воздух (5), в результате чего содержащая серу жидкость подается на поверхность (6).
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: СЕРА


будет выглядеть так: Что такое СЕРА