Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

НАСЛЕДСТВЕННОСТЬ

Большая советская энциклопедия (БЭС)
I
Наследственность
        присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым Н. обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или Онтогенеза. Как общебиологическое явление Н. — важнейшее условие существования дифференцированных форм жизни, невозможных без относительного постоянства признаков организмов, хотя оно нарушается Изменчивостью — возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, Н. проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.
         Иногда термин «Н.» относят к передаче от одного поколения другому инфекционных начал (так называемая инфекционная Н.) или навыков обучения, образования, традиций (так называемая социальная, или сигнальная, Н.). Подобное расширение понятия Н. за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную Н. от нормальной затруднительно. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль Н. в скорости закрепления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную Н. входит компонент биологической Н.
         Попытки объяснения явлений Н., относящиеся к глубокой древности (Гиппократ, Аристотель и др.), представляют лишь исторический интерес. Только вскрытие сущности полового размножения позволило уточнить понятие Н. и связать её с определёнными частями клетки. К середине 19 в. благодаря многочисленным опытам по гибридизации растений (И. Г. Кёльрёйтер и др.) накапливаются данные о закономерностях Н. В 1865 Г. Мендель в ясной математической форме обобщил результаты своих экспериментов по гибридизации гороха. Эти обобщения позднее получили название Менделя законов (См. Менделя законы) и легли в основу учения о Н. — Менделизма. Почти одновременно были сделаны попытки умозрительно понять сущность Н. В книге «Изменения домашних животных и культурных растений» Ч. Дарвин (1868) предложил свою «временную гипотезу пангенезиса», согласно которой от всех клеток организма отделяются их зачатки — геммулы, которые, двигаясь с током крови, оседают в половых клетках и образованиях, служащих для бесполого размножения (почки и др.). Т. о., получалось, что половые клетки и почки состоят из громадного количества геммул. При развитии организма геммулы превращаются в клетки того же типа, из которых они образовались. В гипотезе Пангенезиса объединены неравноценные представления: о наличии в половых клетках особых частиц, определяющих последующее развитие особи; о переносе их из клеток тела в половые. Первое положение было плодотворным и привело к современным представлениям о корпускулярной Н. Второе, дававшее основание для представления о наследовании приобретённых признаков, оказалось неверным. Умозрительные теории Н. развивали также Ф. Гальтон, К. Негели, Х. Де Фриз.
         Наиболее детализированную спекулятивную теорию Н. предложил А. Вейсман (1892). Основываясь на накопившихся к тому времени данных по оплодотворению (См. Оплодотворение), он признавал наличие в половых клетках особого вещества — носителя Н. — зародышевой плазмы. Видимые образования клеточного ядра — Хромосомы — Вейсман считал высшими единицами зародышевой плазмы — идантами. Иданты состоят из ид, располагающихся в хромосоме в виде зёрен в линейном порядке. Иды состоят из детерминант, определяющих при развитии особи сорт клеток, и биофор, обусловливающих отдельные свойства клеток. Ида заключает в себе все детерминанты, нужные для построения тела особи данного вида. Зародышевая плазма содержится лишь в половых клетках; соматические, или клетки тела, лишены её. Чтобы объяснить это коренное различие, Вейсман предполагал, что в процессе дробления оплодотворённого яйца основной запас зародышевой плазмы (а значит, и детерминант) попадает в одну из первых клеток дробления, которая становится родоначальной клеткой так называемого зародышевого пути (См. Зародышевый путь). В остальные клетки зародыша в процессе «неравнонаследственных делений» попадает лишь часть детерминант; наконец, в клетках останутся детерминанты одного сорта, определяющие характер и свойства именно этих клеток. Существенное свойство зародышевой плазмы — её большое постоянство. Теория Вейсмана оказалась ошибочной во многих деталях. Однако его идея о роли хромосом и о линейном расположении в них элементарных единиц Н. оказалась верной и предвосхитила хромосомную теорию Н. (см. ниже). Логический вывод из теории Вейсмана — отрицание наследования приобретённых признаков. Во всех умозрительных теориях Н. можно обнаружить отдельные элементы, нашедшие в дальнейшем подтверждение и более полное развитие в сложившейся в начале 20 в. генетике (См. Генетика). Важнейшие из них: а) выделение в организме отдельных признаков или свойств, наследование которых может быть проанализировано соответствующими методами; б) детерминация этих свойств особыми дискретными единицами Н., локализованными в структурах клетки (ядра) (Дарвин называл их геммулами, Де Фриз — пангенами, Вейсман — детерминантами). В современной генетике общепринятым стал предложенный В. Иогансеном (1909) термин Ген.
         Особняком стояли попытки установления закономерностей Н. статистическими методами. Один из создателей биометрии (См. Биометрия) — Ф. Гальтон применил разработанные им методы учёта корреляции и регрессии для установления связи между родителями и потомками. Он сформулировал следующие законы Н. (1889): регрессии, или возврата к предкам, и так называемой анцестральной Н., т. е. доли Н. предков в Н. потомков. Законы носят статистический характер, применимы лишь к совокупностям организмов и не раскрывают сущности и причин Н., что могло быть достигнуто только с помощью экспериментального изучения Н. разными методами и, прежде всего гибридологическим анализом (См. Гибридологический анализ), основы которого были заложены ещё Менделем. Так были установлены закономерности наследования качественных признаков: моногибридное — различие между скрещиваемыми формами зависит лишь от одной пары генов, дигибридное — от двух, полигибридное — от многих. При анализе наследования количественных признаков отсутствовала чёткая картина расщепления, что давало повод выделять особую, так называемую слитную Н. и объяснять её смешением наследственных плазм скрещиваемых форм. В дальнейшем гибридологический и биометрический анализ наследования количественных признаков показал, что и слитная Н. сводится к дискретной, но наследование при этом полигенное (см. Полимерия). В этом случае расщепление трудно обнаружить, так как оно происходит по многим генам, действие которых на признак осложняется сильным влиянием условий внешней среды. Т. о., хотя признаки можно разделять на качественные и количественные, термины «качественная» и «количественная» Н. не оправданы, так как обе категории Н. принципиально одинаковы.
         Развитие цитологии (См. Цитология) привело к постановке вопроса о материальных основах Н. Впервые мысль о роли ядра как носителя Н. была сформулирована О. Гертвигом (1884) и Э. Страсбургером (1884) на основании изучения процесса оплодотворения. Т. Бовери (1887) установил индивидуальность хромосом и развил гипотезу о их качественном различии. Он же, а также Э. ван Бенеден (1883) установили уменьшение количества хромосом вдвое при образовании половых клеток в Мейозе. Американский учёный У. Сеттон (1902) дал цитологическое объяснение закону Менделя о независимом наследовании признаков. Однако подлинное обоснование хромосомной теории Н. было дано в работах Т. Моргана и его школы (начиная с 1911), в которых было показано точное соответствие между генетическими и цитологическими данными. В опытах на дрозофиле было установлено нарушение независимого распределения признаков — их сцепленное наследование. Это явление было объяснено сцеплением генов, т. е. нахождением генов, определяющих эти признаки, в одной определённой паре хромосом. Изучение частоты рекомбинаций (См. Рекомбинация) между сцепленными генами (в результате Кроссинговера) позволило составить карты расположения генов в хромосомах (см. Генетические карты хромосом). Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории Н. были получены при изучении наследования, сцепленного с полом. Ранее цитологи открыли в хромосомных наборах ряда видов животных особые, так называемые Половые хромосомы, которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы (XX), а самцы — разные (XY), в других — самцы — 2 одинаковые (XX, или ZZ), а самки — разные (XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным, с разными — гетерогаметным. Женский пол гомогаметен, а мужской гетерогаметен у некоторых насекомых (в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение — у птиц и бабочек. Ряд признаков у дрозофилы наследуется в строгом соответствии с передачей потомству Х-хромосом. Самка дрозофилы, проявляющая рецессивный признак (см. Рецессивность), например белую окраску глаз, в силу гомозиготности по этому гену, находящемуся в Х-хромосоме, передаёт белую окраску глаз всем сыновьям, так как они получают свою Х-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передаёт его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки — XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою Х (= Z) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения Х-хромосом концами; тогда самки передают сцепленные Х-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии — от отца к сыну (такое наследование называется голандрическим). Хромосомная теория Н. вскрыла внутриклеточные механизмы Н., дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений Н., т. е. изменчивости.
         Первенствующая роль ядра и хромосом в Н. не исключает передачи некоторых признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению (см. Наследственность цитоплазматическая). Единицы цитоплазматической (нехромосомной) Н. отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной Н. воспроизводит признаки только одного из родителей (чаще матери). Т. о., различают ядерную Н., связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда её называют хромосомной Н.), и в не ядерную, зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная Н. реализуется и при вегетативном размножении (См. Вегетативное размножение), но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями (См. Соматические мутации).
         Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению Н. на молекулярном уровне и бурному развитию молекулярной генетики (См. Молекулярная генетика). Впервые Н. К. Кольцов (доложено в 1927, опубликовано в 1928, 1935) выдвинул и обосновал представление о молекулярной основе Н. и о матричном способе размножения «наследственных молекул». В 40-х гг. 20 в. была экспериментально доказана генетическая роль дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК), а в 50—60-х гг. установлена её молекулярная структура и выяснены принципы кодирования генетической информации (см. Генетический код).
         По мере изучения Н. на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных признаков ген постулировался как элементарная неделимая единица Н., а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген — входящий в состав хромосомы участок молекулы ДНК, способный к самовоспроизведению и имеющий специфическую структуру, в которой закодирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер) было показано, что каждый ген состоит из ряда различных участков, которые могут мутировать и между которыми может происходить кроссинговер. Так подтвердилось представление о сложной структуре гена, развивавшееся ещё в 30-х гг. А. С. Серебровским (См. Серебровский) и Н. П. Дубининым на основе данных генетического анализа.
         В 1967—69 был осуществлен синтез вирусной ДНК вне организма, а также химический синтез гена дрожжевой аланиновой транспортной РНК. Новой областью исследования стала Н. соматических клеток в организме и в культурах тканей. Открыта возможность экспериментальной гибридизации соматических клеток разных видов. В связи с достижениями молекулярной биологии (См. Молекулярная биология) явления Н. приобрели ключевое значение для понимания ряда биологических процессов, а также для многих вопросов практики. Ещё Дарвину было ясно значение Н. для эволюции организмов. Установление дискретной природы Н. устранило одно из важных возражений против дарвинизма: при скрещивании особей, у которых появились наследственные изменения, последние должны якобы «разбавляться» и ослабевать в своём проявлении. Однако, в соответствии с законами Менделя, они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в определённых условиях. В Популяциях явления Н. предстали как сложные процессы, основанные на скрещиваниях между особями, отборе, мутациях (См. Мутации), генетико-автоматических процессах (См. Генетико-автоматические процессы) и др. На это впервые указал С. С. Четвериков (1926), экспериментально доказавший накопление мутаций внутри популяции. И. И. Шмальгаузен (1946) выдвинул положение о «мобилизационном резерве наследственной изменчивости» как материале для творческой деятельности естественного отбора (См. Естественный отбор) при изменении условий внешней среды. Показано значение разных типов изменений Н. в эволюции. Эволюция понимается как постепенное и многократное изменение Н. Вида. В то же время Н., обеспечивающая постоянство видовой организации, — это коренное свойство жизни, связанное с физико-химической структурой элементарных единиц клетки, прежде всего её хромосомного аппарата, и прошедшее длительный период эволюции. Принципы организации этой структуры (генетический код), по-видимому, универсальны для всех живых существ и рассматриваются как важнейший атрибут жизни.
         Под контролем Н. находится и онтогенез, начинающийся с оплодотворения яйца и осуществляющийся в конкретных условиях среды. Отсюда различие между совокупностью генов, получаемых организмом от родителей, — Генотипом и комплексом признаков организма на всех стадиях его развития — Фенотипом. Роль генотипа и среды в формировании фенотипа может быть различна. Но всегда следует учитывать генотипически обусловленную норму реакции (См. Норма реакции) организма на влияния среды. Изменения в фенотипе не отражаются адекватно на генотипической структуре половых клеток, поэтому традиционное представление о наследовании приобретённых признаков отвергнуто, как не имеющее фактической основы и неправильное теоретически. Механизм реализации Н. в ходе развития особи, по-видимому, связан со сменой действия разных генов во времени и осуществляется при взаимодействии ядра и цитоплазмы, в которой происходит синтез тех или иных белков на основе программы, записанной в ДНК и передающейся в цитоплазму с информационной РНК.
         Закономерности Н. имеют огромное значение для практики сельского хозяйства и медицины. На них основываются выведение новых и совершенствование существующих сортов растений и пород животных. Изучение закономерностей Н. привело к научному обоснованию применявшихся ранее эмпирически методов селекции и к разработке новых приёмов (экспериментальный Мутагенез, Гетерозис, Полиплоидия и др.). Данные генетики человека (См. Генетика человека) показали, что довольно часты гены, определяющие развитие разнообразных уродств и наследственных заболеваний (См. Наследственные заболевания); наследственных болезней обмена, психических и др. (см. «Молекулярные болезни», Хромосомные болезни, Медицинская генетика (См. Генетика медицинская)). Уменьшению вероятности появления в семьях наследственно больных детей призваны способствовать медико-генетические консультации (См. Медико-генетическая консультация). Ранняя диагностика наследственных заболеваний позволяет применить необходимые методы лечения. Существенно важен учёт Н. в реакции разных людей на лекарства и др. химические вещества, а также в иммунологических реакциях. Бесспорна роль молекулярно-генетических механизмов в этиологии злокачественных опухолей.
         Явления Н. предстают в разной форме в зависимости от уровня жизни, на котором они изучаются (молекула, клетка, организм, популяция). Но в конечном счёте Н. обеспечивается самовоспроизведением материальных единиц Н. (генов и цитоплазматических элементов), молекулярная структура которых известна. Закономерный матричный характер их ауторепродукции нарушается мутациями отдельных генов или перестройками генетических систем в целом. Всякое изменение в ауторепродуцирующемся элементе наследуется константно.
         Лит.: Вильсон Э., Клетка и ее роль в развитии и наследственности, пер. с англ., т. 1—2, М. — Л., 1936—40; Морган Т., Избранные работы по генетике, пер. с англ., М. — Л., 1937; Сэджер Р., Райн Ф., Цитологические и химические основы наследственности, пер. с англ., М., 1964; Сталь Ф., Механизмы наследственности, пер. с англ., М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967; Гайсинович А. Е., Зарождение генетики, М., 1967; Уотсон Дж. Д., Молекулярная биология гена, пер. с англ., М., 1967; Успехи современной генетики. Сб. ст., в. 1—4, М., 1967—72; Классики советской генетики. Сб. ст., Л., 1968; Дубинин Н. П., Общая генетика, М., 1970; Ичас М., Биологический код, пер. с англ., М., 1971; Меттлер Л., Грегг Т., Генетика популяций и эволюция, пер. с англ., М., 1972; Weber Е., Mathematische Grundlagen der Genetik, Jena, 1967; Sinnott Е., Dunn L., Dobzhansky Th., Principles of genetics, N. Y., 1958.
         См. также лит. при статьях Генетика, Дарвинизм, Менделизм, Молекулярная генетика.
         П. Ф. Рокицкий.
II
Наследственность
        структуры в металлах, сохранение формы и кристаллографической ориентации каких-либо элементов структуры после прямого (при охлаждении) и обратного (при нагреве) полиморфного превращения (см. Полиморфизм). При обратном превращении могут восстанавливаться контуры исходных (перед прямым превращением) кристаллов (границы зерна), ориентация решётки кристаллов, местоположение дислокаций (См. Дислокации) и дефектов упаковки в них, а иногда даже макроскопическая форма изделия, если при его пластической деформации образовывался Мартенсит («эффект памяти»). Наследование кристаллографической ориентации и дефектов решётки обеспечивается упорядоченной перестройкой одной решётки в другую при сдвиговом полиморфном превращении, а восстановление формы зерна — также сохранением химической неоднородности (сегрегаций примеси и включений на месте старых границ). Н. структуры в легированной стали мешает измельчению зерна при отжиге отливок и поковок. Наследование дислокаций, внесённых наклёпом, используют для повышения прочности стали термомеханической обработкой (См. Термомеханическая обработка). Из сплавов с «эффектом памяти» делают детали приборов, меняющие форму при нагреве.
         Лит.: Бернштейн М. Л., Штремель М. А., О «наследственном» влиянии наклепа на свойства стали, «Физика металлов и металловедение», 1963, т. 15, в. 1; Садовский В. Д., Структурная наследственность в стали, М., 1973.
         М. А. Штремель.
Мультимедийная энциклопедия
присущее всем живым существам свойство быть похожим на своих родителей. Однако особи каждого вида, будучи в целом схожими, все же различны и имеют свои, индивидуальные особенности (признаки). Но и эти признаки наследуются - передаются от родителей к детям. Генетические основы наследственности и есть предмет настоящей статьи. НОСИТЕЛИ НАСЛЕДСТВЕННОСТИ ДНК. Многоклеточные организмы, как здания, сложены из миллионов кирпичиков - клеток. Основным "строительным" материалом клетки являются белки. У каждого типа белка - своя функция: одни входят в состав клеточной оболочки, другие - создают защитный "чехол" для ДНК, третьи передают "инструкции" о том, как производить белки, четвертые регулируют работу клеток и органов, и т.д. Каждая молекула белка представляет собой цепочку из многих десятков, даже сотен звеньев - аминокислот; такую цепь называют полипептидной. Сложные белки могут состоять из нескольких полипептидных цепей. В процессе жизнедеятельности белки расходуются, и потому регулярно воспроизводятся в клетке. Их полипептидные цепи строятся последовательно - звено за звеном, и эта последовательность закодирована в ДНК. ДНК - длинная двухцепочечная молекула; состоит из отдельных звеньев - нуклеотидов. Всего имеется четыре типа нуклеотидов, обозначаемых как А (аденин), Г (гуанин), Т (тимин), Ц (цитозин). Тройка нуклеотидов (триплет) кодирует одну аминокислоту согласно т.н. генетическому коду. ДНК хранится в ядре клетки в виде нескольких "упаковок" - хромосом. Гены. Участок ДНК, в котором закодирована определенная полипептидная цепь, называется геном. Скажем, его фрагмент "TЦT ТГГ" кодирует аминокислотное звено: "серин-триптофан". Основная функция генов - поддержание жизнедеятельности организма путем производства белков в клетке, координация деления и взаимодействия клеток между собой. Гены у разных индивидов даже одного вида могут различаться - в пределах, не нарушающих их функцию. Каждый ген может быть представлен одной или большим числом форм, называемых аллелями. Все клетки организма, кроме половых клеток, содержат по два аллеля каждого гена; такие клетки называют диплоидными. Если два аллеля идентичны, то организм называют гомозиготным по этому гену; если аллели разные, то - гетерозиготным. Аллели эволюционно возникли и возникают как мутации - сбои в передаче ДНК от родителей к детям. Например, если бы в указанной выше нуклеотидной последовательности "TЦT ТГГ" третий нуклеотид, Т, ошибочно передался бы ребенку как Ц, то вместо родительского "серин-триптофан" он бы имел фрагмент белка "аланин-триптофан", поскольку триплет TЦЦ кодирует аминокислоту аланин. Аллели, прошедшие апробацию отбором (см. <<ПОПУЛЯЦИОННАЯ ГЕНЕТИКА>>), и образуют то наследственное разнообразие, которое мы сейчас наблюдаем, - от цвета кожи, глаз и волос до физиологических и эмоциональных реакций. Хромосомы. ДНК защищена от внешних воздействий "упаковкой" из белков и организована в хромосомы, находящиеся в ядре клетки. В хромосоме регулируется активность генов, их восстановление при радиационном, химическом или ином типе повреждений, а также их репликация (копирование) в ходе клеточных делений - митоза и мейоза (см. <<КЛЕТКА>>). Каждый вид растений и животных имеет определенное число хромосом. У диплоидных организмов оно парное, две хромосомы каждой пары называются гомологичными. Среди них различают половые (см. ниже) и неполовые хромосомы, или аутосомы. Человек имеет 46 хромосом: 22 пары аутосом и одну пару половых хромосом; при этом одна из хромосом каждой пары приходит от матери, а другая - от отца. Число хромосом у разных видов неодинаково. Например, у классического генетического объекта - плодовой мушки дрозофилы - их четыре пары. У некоторых видов хромосомные наборы состоят из сотен пар хромосом; однако количество хромосом в наборе не имеет прямой связи ни со сложностью строения организма, ни с его эволюционным положением. Помимо ядра, ДНК содержится в митохондриях, а у растений - еще и в хлоропластах. Поэтому те гены, которые находятся в ядерной ДНК, называют ядерными, а внеядерные, соответственно, митохондриальными и хлоропластными. Внеядерные гены контролируют часть энергетической системы клеток: гены митохондрий отвечают в основном за синтез ферментов реакций окисления, а гены хлоропластов - реакций фотосинтеза. Все остальные многочисленные функции и признаки организма определяются генами, находящимися в хромосомах. Передача генов потомству. Виды поддерживают свое существование сменой одних поколений другими. При этом возможны различные формы размножения: простое деление, как у одноклеточных организмов, вегетативное воспроизводство, как у многих растений, половое размножение, свойственное высшим животным и растениям (см. <<РАЗМНОЖЕНИЕ>>). Половое размножение осуществляется с помощью половых клеток - гамет (сперматозоидов и яйцеклеток). Каждая гамета несет одинарный, или гаплоидный, набор хромосом, содержащий только по одному гомологу; у человека это 23 хромосомы. Соответственно, каждая гамета содержит только один аллель каждого гена. Половина гамет, производимых особью, несет один аллель, а половина - другой. При слиянии яйцеклетки со сперматозоидом - оплодотворении, - образуется одна диплоидная клетка, называемая зиготой. Из клеток, получающихся в результате митотических делений зиготы в процессе индивидуального развития (онтогенезе), формируется новый организм. В зависимости от того, какие аллели несет данная особь, у нее развиваются те или иные признаки. Отметим, что равновероятное распределение аллелей по гаметам было открыто Грегором Менделем в 1865 и известно как Первое правило Менделя. См. далее <<НАСЛЕДОВАНИЕ АУТОСОМНЫХ ПРИЗНАКОВ>>
Современная Энциклопедия
НАСЛЕДСТВЕННОСТЬ, свойство организмов повторять в ряду поколений признаки и особенности развития. Обеспечивается самовоспроизведением материальных единиц наследственности - генов, локализованных в специфических структурах ядра клетки (хромосомах) и в цитоплазме. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.
Медицинская энциклопедия
I
Наследственность
присущее всем организмам свойство обеспечивать в ряду поколений преемственность признаков и особенностей развития, т. е. морфологической, физиологической и биохимической организации живых существ и характера их индивидуального развития (онтогенеза). Явление Н. лежит в основе воспроизведения форм жизни по поколениям, что принципиально отличает живое от неживого.
Знание законов Н. позволяет понять механизмы передачи наследственной информации от родителей детям, закономерности формирования наследственно обусловленных признаков и роль генов в сложных процессах жизнедеятельности организма (см. Ген). Разработка научно обоснованных методов уменьшения генетического груза наследственных аномалий должна способствовать сохранению наследственной природы человека.
Различают хромосомную и внехромосомную Н. Хромосомная Н. связана с распределением носителей наследственности (генов) в хромосомах. Передача признаков потомству особенно четко прослеживается при наследовании менделирующих признаков, т.е. таких наследственных признаков, которые в потомстве, расщепляются по моногенному типу наследования в соответствии с законами Менделя — эмпирическими правилами наследования, устанавливающими численные соотношения, в которых отдельные признаки и их сочетания проявляются в гибридном потомстве при половом размножении.
Внехромосомная, или цитоплазматическая, Н. заключается в наследовании признаков, которые контролируются факторами, локализованными у животных организмов в митохондриях, у растений — в митохондриях и пластидах, у бактерий — в плазмидах (<<Плазмиды>>). Цитоплазматические элементы, обладающие свойством передачи наследственной информации, распределяются между дочерними клетками случайно, поэтому четкого менделевского расщепления в этих случаях не наблюдается. Все системы внехромосомной Н. взаимодействуют с хромосомными генами или их продуктами.
Углубленное изучение Н. началось в 19 в., а значительный прогресс в этой области был достигнут лишь в 20 в. После открытия Менделем (G. Mendel) основных законов Н. стало несомненным, что она определяется материальными факторами, позже получивших название генов. Однако еще в 1750 г. Мопертюи (P. L.М. Maupertuis) и в 1814 г. Адаме (J. Adams) описали некоторые особенности наследования отдельных признаков у человека. В 1875 г. Гальтон (F. Galton) предложил близнецовый метод для разграничения роли Н. и среды в развитии признаков у человека. Он обосновал генеалогический метод анализа и разработал ряд статистических методов, из которых особенно ценен метод вычисления коэффициента корреляции.
В становлении представлений о природе Н. большое значение имело создание Морганом (Th. Morgan) и его школой хромосомной теории наследственности (см. <<Генетика>>), было выявлено, что ген представляет собой материальную структуру в хромосомах (<<Хромосомы>>) ядра клетки.
В первой половине 20 в. была показана дробимость гена, установлены явление эффекта положения гена, связь генетических элементов с ДНК и сделан ряд других важных открытий. После открытия в 1953 г. структурной и функциональной природы молекул ДНК как носителей генетической информации (см. <<Нуклеиновые кислоты>>) начался современный этап изучения проблемы Н. Важнейшим достижением этого этапа является установление всеобщности материальных основ Н. на базе молекул ДНК и РНК.
Основной целостной единицей жизни служит клетка, имеющая ядро и цитоплазму, причем ядру принадлежит основная роль в обеспечении преемственности признаков и особенностей развития. Ядро содержит нитевидные структуры — хромосомы, представляющие собой образования, состоящие из ДНК и белка.
Основной формой воспроизведения организмов является половой процесс, когда отдельная особь появляется из оплодотворенной яйцеклетки, или зиготы. Самовоспроизведение организмов, в основном растений, может осуществляться при помощи вегетативного размножения. В этом случае потомки возникают из частей родительской особи. При половом размножении происходит расщепление признаков потомства в зависимости от генотипов, вследствие чего, например, при скрещивании гибридных или высокогетерозиготных растений часто наблюдаются возврат к диким формам и потеря ценных сортовых признаков. При вегетативном размножении длительное время удается сохранять генетические свойства сортов. Установлено, что любая растительная клетка, не потерявшая в ходе своей дифференцировки ядра и цитоплазмы, может в культуре превратиться в каллусную, или зиготоподобную, клетку и дать начало новому организму. В экспериментальной биологии широкое распространение получил инбридинг — скрещивание близкородственных особей.
Наследственная информация, заключенная в генах каждой особи (совокупность всех генов, присущих данной особи), носит название генотип, идиотип, или генетическая конституция, является итогом исторического развития данного вида и материальной основой будущей эволюции. Явление Н. рассматривается как сложная молекулярная внутриклеточная система, обеспечивающая хранение и реализацию информации, в соответствии с которой осуществляются жизнь клетки, развитие особи и ее жизнедеятельности. Реализация наследственной информации, записанной с помощью генетического кода — чередования нуклеотидов в ДНК зиготы, происходит в результате непрерывных взаимовлияний ядра и цитоплазмы, межклеточных взаимодействий и гормональной регуляции активности генов.
В ходе развития генотип постоянно взаимодействует со средой. Совокупность всех свойств и признаков особи, сформировавшаяся в результате взаимодействия генотипа с окружающей средой, получила название фенотипа. Соответствие фенотипа особи генотипу материнского организма, обусловленное передачей материнских генов через овоплазму, называется материнским эффектом, или материнской наследственностью. Некоторые наследственные признаки, например цвет глаз или группа крови, не зависят от условий среды. В то же время на развитие некоторых количественных признаков, таких как рост и вес тела, факторы окружающей среды оказывают большое влияние. Проявление эффектов генов, обусловливающих, например, тучность, во многом зависит от питания, поэтому при помощи соответствующей диеты можно в определенной степени бороться с наследственно обусловленной полнотой.
Материальные носители Н. содержат информацию не только о нормальных, но и о патологических признаках. Так, различного рода мутации — генетический груз, накапливаемый в генофонде человека, являются причиной возникновения большого числа наследственных аномалий, от которых страдают сотни миллионов людей нашей планеты (см. <<Наследственные болезни>>). Болезни с доминантным типом наследования или сцепленные с полом обнаруживаются сравнительно легко. Труднее установить значение Н. в развитии таких широко распространенных полигенных болезней с наследственным предрасположением, как гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, бронхиальная астма и др. Частота возникновения и тяжесть течения этих болезней зависят от конкретного сочетания факторов окружающей среды и наследственного предрасположения.
См. также <<Генетика>>, <<Изменчивость>>, <<Медицинская генетика>>.

Библиогр.: Бердышев К.Д. и Криворученко И.Ф. Генетика человека с основами медицинской генетики, Киев, 1979: Бочков Н.П. Генетика человека, М., 1978: Гершензон С.М. Основы современной генетики, Киев, 1983; библиогр.: Конюхов Б.В. и Пашин Ю.В. Наследственность человека, М., 1971; Ленц В. Медицинская генетика, М., 1984.
II
Наследственность
свойство живой материи передавать потомству признаки и особенности развития родителей; обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ в ряду поколений.
Наследственность внехромосомная — см. Наследственность цитоплазматическая.
Наследственность внеядерная — см. Наследственность цитоплазматическая.
Наследственность неменделевская — см. Наследственность цитоплазматическая.
Наследственность цитоплазматическая (син.: Н. внехромосомная, Н. внеядерная, Н. неменделевская, Н. экстрануклеарная, Н. экстрахромосомная) — Н., обусловленная факторами, локализующимися в цитоплазме.
Наследственность экстрануклеарная (лат. extra- вне + nucleus ядро) — см. Наследственность цитоплазматичеческая.
Наследственность экстрахромосомная — см. Наследственность цитоплазматическая.
Идеографический словарь
^ преемственность
^ поколение
наследственность - биологическая передача генетических характеристик потомству от родителей, по наследству; передача свойств от старого к новому;
материальная преемственность между поколениями (# поколений).
задатки. | от природы. по природе.
генокопия. фенокопия.
рецессивный признак. доминантный признак.
гомозиготоность. <--> гетерозиготность.
мутация.
мутагены. мутагенез. антимутагены.
сибсы.
v скрещивание, индивид, поведение животных, одаренность
см. преемственность, характеристика, материальный организм
строение (чего), предопределить
Орфографический словарь Лопатина
насл`едственность, насл`едственность, -и
Словарь Ожегова
НАСЛ’ЕДСТВЕННОСТЬ, -и, жен. Свойства организмов повторять от поколения к поколению сходные природные признаки. Материальные носители наследственности (гены).
Словарь Ушакова
НАСЛ’ЕДСТВЕННОСТЬ, наследственности, мн. нет, ·жен. (·книж. ).
1. Способность живых существ передавать свои физические или психические особенности потомству. Явления наследственности. Теория наследственности.
2. Качества здоровья, особенности состояния организма, передающиеся от родителей к детям. В их семье плохая наследственность. Туберкулезная наследственность.
3. ·отвлеч. сущ. к наследственный. Наследственность болезней.
Толковый словарь Ефремовой
[наследственность]
ж.
1) Отвлеч. сущ. по знач. прил.: наследственный (4).
2) Способность живых существ передавать свои качества, свойства потомству.
3) Совокупность природных свойств организма, полученных от родителей.
Большой психологический словарь
(англ. heredity) — свойство живых систем воспроизводить свою организацию или, иначе говоря, воссоздавать себе подобных в ряду поколений. Современный этап изучения Н. характеризуется раскрытием молекулярной структуры генетического материала и выявлением важных особенностей его функциональной организации. Установлено, что хранение, воспроизведение и передача наследственной информации обеспечиваются посредством дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот.
Совокупность генов — генотип — образует целостную, исключительно слаженно и эффективно работающую систему, постоянно совершенствующуюся в процессе эволюции. Под большим или меньшим контролем генотипа находятся все признаки организма — анатомо-морфологические, биохимические, физиологические, вплоть до параметров высшей нервной деятельности у животных и человека (см. Генетика поведения, Психогенетика). Однако становление признаков и их индивидуальное выражение зависят в пределах возможностей, заданных генотипом, от конкретных условий, которые складываются для каждой особи в процессе индивидуального развития.
Психологический словарь (И.М.Кондаков)
Категория.
Эволюционный опыт предыдущих поколений живых организмов, запечатленный в генетическом аппарате.
Специфика.
Хранение, воспроизведение и передача наследственной информации происходит посредством дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот, индивидуальная совокупность которых образовывает генотип. Под его контролем находятся морфологические, биохимические, физиологические признаки организма. Но проявление этих признаков в индивиде зависит от конкретных условий индивидуального развития.
Социологический Энциклопедичечкий Словарь
НАСЛЕДСТВЕННОСТЬ - англ. heredity; нем. Vererbung /Erblichkeit. Свойство живых систем воспроизводить себе подобных в ряду поколений.
Философский энциклопедический словарь
НАСЛЕДСТВЕННОСТЬ – передача прямым потомкам родительских свойств. Осуществляется благодаря непрерывности зародышевой плазмы: в то время как из одной части ее образуется тело нового индивида, др. часть продолжает свое существование в зародышевых клетках (яйцеклетках и сперматозоидах) этого индивида; в новом поколении этот процесс происходит вновь, в результате чего опять образуется новое тело, и, т. д. В теле «развиваются» «задатки» зародышевой плазмы и через нее передаются от поколения к поколению (см. ГЕН, ИЗМЕНЧИВОСТЬ). Совокупность этих задатков и представляет собой то, что наследуется. Ламаркизм (см. ЛАНАРК) делает упор на влияние среды на наследственность при длительных одинаково направленных воздействиях (см. НЕОЛАМАРКИЗМ). Вопрос о том, наследуются ли приобретенные индивидом свойства, все еще является спорным. Учение о наследовании (наследственности) берет свое начало с опытов Грегора Менделя (18221884), осуществленных еще в 60-х годах прошлого столетия, но объясненных только около 1900 (Корренс, Чермак, де Фриз).
Научнотехнический Энциклопедический Словарь
НАСЛЕДСТВЕННОСТЬ, передача физических и других характеристик от одного поколения растений или животных к следующему. Такие характеристики, как синие глаза и рыжие волосы, могут быть индивидуальны, а другие, такие как вертикальная осанка и наличие наружных ушных раковин, могут быть типичны для всего вида организмов. Совокупность характеристик, которая делает организм отличным от других, находится в ГЕНЕТИЧЕСКОМ КОДЕ организма и передается от родителя(ей) к потомству. Первые исследования наследственности были проведены в XIX столетии Грегором МЕНДЕЛЕМ. см. также АЛЛЕЛЬ, ХРОМОСОМЫ, ГЕН, ПОЛОВОЕ РАЗМНОЖЕНИЕ.
Энциклопедия афоризмов

см.также ДЕТИ, РОДИТЕЛИ
Порода сильнее пастбища.
•Джордж Элиот
Родители - одновременно наследственность и среда.
•Автор неизветен
В наследственность тверже всего верят отцы, у которых красивые дети.
•Автор неизветен
У наших детей умные родители.
•Юзеф Булатович
Все хорошее было у него от родителей, все плохое - от отца с матерью.
•Михаил Генин
Все плохое наследуется от другого родителя.
•«Первый закон наследственности»
Отцы обычно рады, когда сыновья похожи на них лицом, но не слишком рады, когда они похожи на них поведением.
•Автор неизветен
Что может быть утешительнее, чем обнаружить у своего отпрыска свои же дурные черты? Это почти отпущение твоих грехов.
•Ван Вик Брукс
Вундеркинды, как правило, дети родителей с богатым воображением.
•Жан Кокто
От матери я унаследовал способность сберегать деньги, а от отца - неспособность их зарабатывать.
•Лоренс Питер
Бездетность в вашей семье может быть наследственной.
•Роберт Бунзен
Чем дольше живешь, тем больше наследуешь от себя самого.
•Лешек Кумор
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: НАСЛЕДСТВЕННОСТЬ


будет выглядеть так: Что такое НАСЛЕДСТВЕННОСТЬ