Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

КИБЕРНЕТИКА

Большая советская энциклопедия (БЭС)
I
Кибернетика (от греч. kybernetike — искусство управления, от kybernao — правлю рулём, управляю)
        наука об управлении, связи и переработке информации (См. Информация).
         Предмет кибернетики. Основным объектом исследования в К. являются так называемые кибернетические системы. В общей (или теоретической) К. такие системы рассматриваются абстрактно, безотносительно к их реальной физической природе. Высокий уровень абстракции позволяет К. находить общие методы подхода к изучению систем качественно различной природы, например технических, биологических и даже социальных.
         Абстрактная кибернетическая система представляет собой множество взаимосвязанных объектов, называемых элементами системы, способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией. Примерами кибернетических систем могут служить разного рода автоматические регуляторы в технике (например, автопилот или регулятор, обеспечивающий поддержание постоянной температуры в помещении), электронные вычислительные машины (ЭВМ), человеческий мозг, биологические популяции, человеческое общество.
         Элементы абстрактной кибернетической системы представляют собой объекты любой природы, состояние которых может быть полностью охарактеризовано значениями некоторого множества параметров. Для подавляющего большинства конкретных приложений К. оказывается достаточным рассматривать параметры двух родов. Параметры 1-го рода, называемые непрерывными, способны принимать любые вещественные значения на том или ином интервале, например на интервале от — 1 до 2 или от — до +. Параметры 2-го рода, называемые дискретными, принимают конечные множества значений, например значение, равное любой десятичной цифре, значения «да» или «нет» и т.п.
         С помощью последовательностей дискретных параметров можно представить любое целое или рациональное число. Вместе с тем дискретные параметры могут служить и для оперирования величинами качественной природы, которые обычно не выражаются числами. Для этой цели достаточно перечислить и как-то обозначить (например, по пятибалльной системе) все различимые состояния соответствующей величины. Таким образом могут быть охарактеризованы и введены в рассмотрение такие факторы, как темперамент, настроение, отношение одного человека к другому и т.п. Тем самым область приложений кибернетических систем и К. в целом расширяется далеко за пределы строго «математизированных» областей знаний.
         Состояние элемента кибернетической системы может меняться как самопроизвольно, так и под воздействием тех или иных входных сигналов, получаемых им извне (из-за пределов рассматриваемой системы), либо от других элементов системы. В свою очередь каждый элемент системы может формировать выходные сигналы, зависящие в общем случае от состояния элемента и воспринимаемых им в рассматриваемый момент времени входных сигналов. Эти сигналы либо передаются на др. элементы системы (служа для них входными сигналами), либо входят в качестве составной части в передаваемые за пределы системы выходные сигналы всей системы в целом.
         Организация связей между элементами кибернетической системы носит название структуры этой системы. Различают системы с постоянной и переменной структурой. Изменения структуры задаются в общем случае как функция от состояний всех составляющих систему элементов и от входных сигналов всей системы в целом.
         Таким образом, описание знаков функционирования системы задается тремя семействами функций: функций, определяющих изменения состояний всех элементов системы, функций, задающих их выходные сигналы, и, наконец, функций, вызывающих изменения в структуре системы. Система называется детерминированной, если все эти функции являются обычными (однозначными) функциями. Если же все эти функции, или хотя бы часть их, представляют собой случайные функции, то система носит название вероятностной, или стохастической. Полное описание кибернетической системы получается, если к указанному описанию знаков функционирования системы добавляется описание её начального состояния, т. е. начальной структуры системы и начальных состояний всех её элементов.
         Классификация кибернетических систем. Кибернетические системы различаются по характеру циркулирующих в них сигналов. Если все эти сигналы, равно как и состояние всех элементов системы, задаются непрерывными параметрами, система называется непрерывной. В случае дискретности всех этих величин говорят о дискретной системе. В смешанных, или гибридных, системах приходится иметь дело с обоими типами величин.
         Разделение кибернетических систем на непрерывные и дискретные является до известной степени условным. Оно определяется глубиной проникновения в предмет, требуемой точностью его изучения, а иногда и удобством использования для целей изучения системы того или иного математического аппарата. Так, например, хорошо известно, что свет имеет дискретную, квантовую природу. Тем не менее, такие параметры, как величина светового потока, уровень освещенности и др. принято обычно характеризовать непрерывными величинами поскольку, постольку обеспечена возможность достаточно плавного их изменения. Другой пример — обычный проволочный реостат. Хотя величина его сопротивления меняется скачкообразно, при достаточной малости этих скачков оказывается возможным и удобным считать изменение непрерывным.
         Обратные примеры еще более многочисленны. Так, выделительная функция почки на обычном (неквантовом) уровне изучения является непрерывной величиной. Однако во многих случаях довольствуются пятибалльной характеристикой этой функции, рассматривая ее тем самым как дискретную величину. Более того, при любом фактическом вычислении значения непрерывных параметров приходится ограничиваться определенной точностью вычислений. А это означает, что соответствующая величина рассматривается как дискретная.
         Последний пример показывает, что дискретный способ представления величин является универсальным способом, ибо имея в виду недостижимость абсолютной точности измерений, любые непрерывные величины сводятся в конечном счете к дискретным. Обратное сведение для дискретных величин, принимающих небольшое число различных значений, не может привести к удовлетворительным (с точки зрения точности представления) результатам и поэтому на практике не употребляется. Таким образом, дискретный способ представления величины является в определённом смысле более общим, чем непрерывный.
         Разделение кибернетических систем на непрерывные и дискретные имеет большое значение с точки зрения используемого для их изучения математического аппарата. Для непрерывных систем таким аппаратом является обычно теория систем обыкновенных дифференциальных уравнений, для дискретных систем — Алгоритмов теория и Автоматов теория. Ещё одной базовой математической теорией, используемой как в случае дискретных, так и в случае непрерывных систем (и развивающейся соответственно в двух аспектах), является Информации теория.
         Сложность кибернетических систем определяется двумя факторами. Первый фактор — это так называемая размерность системы, т. е. общее число параметров, характеризующих состояния всех её элементов. Второй фактор — сложность структуры системы, определяющаяся общим числом связей между ее элементами и их разнообразием. Простая совокупность большого числа не связанных между собой элементов с повторяющимися от элемента к элементу простыми связями, ещё не составляет сложной системы. Сложные (большие) кибернетические системы — это системы с описаниями, не сводящимися к описанию одного элемента и указанию общего числа таких (однотипных) элементов.
         При изучении сложных кибернетических систем, помимо обычного разбиения системы на элементы, используется метод укрупнённого представления систем в виде совокупности отдельных блоков, каждый из которых является отдельной системой. При изучении систем большой сложности употребляется целая иерархия подобных блочных описаний: на верхнем уровне такой иерархии вся система рассматривается как один блок, на нижнем уровне в качестве составляющих системы блоков выступают отдельные элементы системы.
         Необходимо подчеркнуть, что само понятие элемента системы является до известной степени условным, зависящим от ставящихся при изучении системы целей и от глубины проникновения в предмет. Так, при феноменологическом подходе изучения мозга, когда предметом изучения является не строение мозга, а выполняемые им функции, мозг может рассматриваться как один элемент, хотя и характеризуемый достаточно большим числом параметров. Обычный подход заключается в том, что в качестве составляющих мозг элементов выступают отдельные нейроны. При переходе на клеточный или молекулярный уровень каждый нейрон может, в свою очередь, рассматриваться как сложная кибернетическая система и т.д.
         Если обмен сигналами между элементами системы полностью замыкается в ее пределах, то система называется изолированной или замкнутой. Рассматриваемая как один элемент, такая система не имеет ни входных, ни выходных сигналов. Открытые системы в общем случае имеют как входные, так и выходные каналы, по которым они обмениваются сигналами с внешней средой. Предполагается, что всякая открытая кибернетическая система снабжена рецепторами (датчиками), воспринимающими сигналы из внешней среды и предающими их внутрь системы. В случае, когда в качестве рассматриваемой кибернетической системы выступает человек, такими рецепторами являются различные органы чувств (зрение, слух, осязание и др.). Выходные сигналы системы передаются во внешнюю среду через посредство эффекторов (исполнительных механизмов), в качестве которых в рассматриваемом случае выступают органы речи, мимика, руки и др.
         Поскольку каждая система сигналов, независимо от того, формируется она разумными существами или объектами и процессами неживой природы, несет в себе ту или иную информацию, то всякая открытая кибернетическая система, равно как и элементы любой системы (открытой или замкнутой), может рассматриваться как преобразователь информации. При этом понятие информации рассматривается в очень общем смысле, близком к физическому понятию энтропии (см. Информация в кибернетике).
         Кибернетический подход к изучению объектов различной природы. Рассмотрение различных объектов живой и неживой природы как преобразователей информации или как систем, состоящих из элементарных преобразователей информации, составляет сущность так называемого кибернетического подхода к изучению этих объектов. Этот подход (равно как и подход со стороны др. фундаментальных наук — механики, химии и тому подобное) требует определенного уровня абстракции. Так, при кибернетическом подходе к изучению мозга как системы нейронов обычно отвлекаются от их размеров, формы, химического строения и др. Предметом изучения становятся состояния нейронов (возбужденное или нет), вырабатываемые ими сигналы, связи между нейронами и законы изменения их состояний.
         Простейшие преобразователи информации могут осуществлять преобразование информации лишь одного определённого вида. Так, например, исправный дверной звонок при нажатии кнопки (рецептора) отвечает всегда одним и тем же действием — звонком или гудением зуммера. Однако, как правило, сложные кибернетические системы обладают способностью накапливать информацию в той или иной форме и в зависимости от этого менять выполняемые ими действия (преобразование информации). По аналогии с человеческим мозгом подобное свойство кибернетических систем называют иногда памятью.
         «Запоминание» информации в кибернетических системах может производиться двумя основными способами — либо за счет изменения состояний элементов системы, либо за счет изменения структуры системы (возможен, разумеется, смешанный вариант). Между этими двумя видами «памяти» по существу нет принципиальных различий. В большинстве случаев это различие зависит лишь от принятого подхода к описанию системы. Например, одна из современных теорий объясняет долговременную память человека изменениями проводимости синаптических контактов, т. е. связей между отдельными составляющими мозг нейронами. Если в качестве элементов, составляющих мозг, рассматриваются лишь сами нейроны, то изменение синаптических контактов следует рассматривать как изменение структуры мозга. Если же наряду с нейронами в число составляющих мозг элементов включить и все синаптические контакты (независимо от степени их проводимости), то рассматриваемое явление сведется к изменению состояния элементов при неизменной структуре системы.
         ЭВМ как преобразователи информации. Из числа сложных технических преобразователей информации наибольшее значение для К. имеют ЭВМ. В более простых вычислительных машинах — цифровых электромеханических или аналоговых — перенастройка на различные задачи осуществляется с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных ЭВМ такие изменения производятся с помощью «запоминания» машиной в специальном устройстве, накапливающем информацию, той или иной программы её работы.
         В отличие от аналоговых машин, оперирующих с непрерывной информацией, современные ЭВМ имеют дело с дискретной информацией. На входе и выходе ЭВМ в качестве такой информации могут выступать любые последовательности десятичных цифр, букв знаков препинания и др. символов. Внутри машины эта информация обычно представляется (или, как говорят, кодируется) в виде последовательности сигналов, принимающих лишь два различных значения.
         В то время как возможности аналоговых машин (равно как и любых других искусственно созданных устройств) ограничены преобразованиями строго ограниченных типов, современные ЭВМ обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.) могут быть выполнены ЭВМ после введения в нее составленной должным образом программы. Эта способность ЭВМ достигается за счет универсальности ее системы команд, т. е. элементарных преобразований информации, которые закладываются в структуру ЭВМ. Подобно тому, как из одних и тех же деталей собираются любые дома, из элементарных преобразований могут складываться любые, сколь угодно сложные преобразования буквенно-цифровой информации. Программа ЭВМ как раз и представляет собой последовательность таких элементарных преобразований.
         Свойство универсальности ЭВМ не ограничивается одной лишь буквенно-цифровой информацией. Как показывается в теории кодирования (См. Кодирование), в буквенно-цифровой (и даже просто цифровой) форме может быть представлена (закодирована) любая дискретная информация, а также — с любой заданной степенью точности — произвольная непрерывная информация. Таким образом, современные ЭВМ могут рассматриваться как универсальные преобразователи информации. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг.
         Свойство универсальности современных ЭВМ открывает возможность моделирования с их помощью любых др. преобразователей информации, в том числе любых мыслительных процессов. Такая возможность ставит ЭВМ в особое положение: с момента своего возникновения они представляют основное техническое средство, основной аппарат исследования, которым располагает К.
         Управление в кибернетических системах. В рассмотренных до сих пор случаях изменение поведения ЭВМ определялось человеком, меняющим программы ее работы. Можно, однако составить программу изменения программы работ ЭВМ и организовать ее общение с внешней средой через соответствующую систему рецепторов и эффекторов. Таким образом, можно моделировать различные формы изменения поведения и развития, наблюдающиеся в сложных биологических и социальных системах. Изменение поведения сложных кибернетических систем есть результат накопления обработанной соответствующим образом информации, которую эти системы получили в прошлом.
         В зависимости от формы, в которой происходит «запоминание» информации, различают два основных типа изменения поведения систем — самонастройку и самоорганизацию. В самонастраивающихся системах накопление опыта выражается в изменении значений тех или иных параметров, в самоорганизующихся — в изменении структуры системы. Как указывалось выше, это различие является до некоторой степени условным, зависящим от способа разбиения системы на элементы. На практике обычно самонастройка связывается с изменениями относительно небольшого числа непрерывных параметров. Что же касается глубоких изменений структуры рабочих программ ЭВМ (которые можно трактовать как изменения состояний большого числа дискретных элементов памяти), то их более естественно рассматривать как пример самоорганизации.
         Целенаправленное изменение поведения кибернетических систем происходит при наличии управления. Цели управления сильно меняются в зависимости от типа систем и степени их сложности. В простейшем случае такой целью может быть поддержание постоянства значения того или иного параметра. Для более сложных систем в качестве целей возникают задачи приспособления к меняющейся среде и даже познания законов таких изменений.
         Наличие управления в кибернетической системе означает, что её можно представить в виде двух взаимодействующих блоков — объекта управления и управляющей системы. Управляющая система по каналам прямой связи через соответствующее множество эффекторов передает управляющие воздействия на объект управления. Информация о состоянии объекта управления воспринимается с помощью рецепторов и передаётся по каналам обратной связи в управляющую систему (см. схему)
         0164505103.tif
         Описанная система с управлением может, как и всякая кибернетическая система, иметь также каналы связи (с соответствующими системами рецепторов и эффекторов) с окружающей средой. В простейших случаях среда может выступать как источник различных помех и искажений в системе (чаще всего в канале обратной связи). В задачу управляющей системы входит тогда фильтрация помех. Особо важное значение эта задача приобретает при дистанционном (телемеханическом) управлении, когда сигналы передаются по длинным каналам связи. Основной задачей управляющей системы является такое преобразование поступающей в систему информации и формирование таких управляющих воздействий, при которых обеспечивается достижение (по возможности наилучшее) целей управления. По виду таких целей и характеру функционирования управляющей системы различают следующие основные типы управления.
         Одним из простейших видов управления является т. н. Программное управление. Цель такого управления состоит в том, чтобы выдать на объект управления ту или иную строго определенную последовательность управляющих воздействий. Обратная связь при таком управлении отсутствует. Наиболее простым примером подобного программного управления является светофор-автомат, переключение которого происходит в заданные заранее моменты времени. Более сложное управление светофором (при наличии счетчиков подъезжающих машин) может включать простейший «пороговый» сигнал обратной связи: переключение светофора происходит всякий раз, когда количество ждущих автомашин превысит заданную величину.
         Весьма простым видом управления является также классическое авторегулирование (см. Автоматическое управление), цель которого состоит в поддержании постоянного значения того или иного параметра (или нескольких независимых параметров). Примером может служить система автоматического регулирования температуры воздуха в помещении: специальный термометр-датчик измеряет температуру воздуха Т, управляющая система сравнивает эту температуру с заданной величиной То и формирует управляющее воздействие — k (T — То) на задвижку, регулирующую приток тёплой воды в батареи центрального отопления. Знак минус при коэффициенте k означает, что регулирование происходит по закону отрицательной обратной связи, а именно: при увеличений температуры Т выше установленного порога То приток тепла уменьшается, при её падении ниже порога — возрастает. Отрицательная обратная связь необходима для обеспечения устойчивости процесса регулирования. Устойчивость системы означает, что при отклонении от положения равновесия (когда Т = То) как в одну, так и в другую сторону система стремится автоматически восстановить это равновесие. При простейшем предположении о линейном характере зависимости между управляющим воздействием и скоростью притока тепла в помещение работа такого регулятора описывается дифференциальным уравнением dT/dt = — k (T — То), решением которого служит функция Т = То + -e-kt, где — отклонение температуры Т от заданной величины То в начальный момент времени. Поскольку рассмотренная система описывается линейным дифференциальным уравнением 1-го порядка, она носит название линейной системы 1-го порядка. Более сложным поведением обладают линейные системы 2-го и более высоких порядков и особенно нелинейные системы.
         Возможны системы, в которых принцип программного управления комбинируется с задачей регулирования в смысле поддержания устойчивого значения той или иной величины. Так, например, в описанный регулятор комнатной температуры может быть встроено программное устройство, меняющее значение регулируемого параметра. Задачей такого устройства может быть, скажем, поддержание температуры +20 °С в дневное время и снижение её до +16°С в ночные часы. Функция простого регулирования перерастает здесь в функцию слежения за значением программно изменяемого параметра.
         В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров. Примером может служить система, непрерывно сопровождающая лучом прожектора маневрирующий произвольным образом самолет.
         В т. н. системах оптимального управления (См. Оптимальное управление) основной целью является поддержание максимального (или минимального) значения некоторой функции от двух групп параметров, называемой критерием оптимального управления. Параметры первой группы (внешние условия) меняются независимо от системы, параметры второй группы являются регулируемыми, т. е. их значения могут меняться под воздействием управляющих сигналов системы.
         Простейший пример оптимального управления снова даёт задача регулирования температуры комнатного воздуха при дополнительном условии учёта изменений его влажности. Величина температуры воздуха, дающая ощущение наибольшего комфорта, зависит от его влажности. Если влажность всё время меняется, а система может управлять лишь изменением температуры, то естественно в качестве цели управления поставить задачу поддержания температуры, которая давала бы ощущение наибольшего комфорта. Это и будет задача оптимального управления. Системы оптимального управления имеют большое значение в задачах управления экономикой.
         В простейшем случае оптимальное управление может сводиться к задаче поддержания наибольшего (или наименьшего) возможного при заданных условиях значения регулируемого параметра. В этом случае говорят о системах экстремального регулирования.
         В случае, когда нерегулируемые параметры в системе оптимального управления на том или ином отрезке времени меняются, функция системы сводится к поддержанию таких постоянных значений регулируемых параметров, которые обеспечивают максимизацию (или минимизацию) соответствующего критерия оптимального управления. Здесь, как и в случае обычного регулирования, возникает задача устойчивости управления. При проектировании относительно несложных систем подобная устойчивость достигается за счет соответствующего выбора параметров проектируемой системы. В более сложных случаях, когда количество возмущающих воздействий и размерность системы очень велики, иногда оказывается удобным для достижения устойчивости прибегать к самонастройке и самоорганизации систем. При этом некоторая часть параметров, определяющая характер существующих в системе связей, не фиксируется заранее и может изменяться системой в процессе ее функционирования. Система имеет специальный блок, регистрирующий характер переходных процессов в системе при выведении ее из равновесия. При обнаружении неустойчивости переходного процесса система меняет значения параметров связей, пока не добьётся устойчивости. Системы такого рода принято называть ультраустойчивыми.
         При большом числе изменяемых параметров связей случайный поиск устойчивых режимов может занимать слишком много времени. В таком случае применяются те или иные способы ограничения случайного перебора, например разбиение параметров связей на группы и осуществление перебора лишь внутри одной группы (определяемой по тем или иным признакам). Такого рода системы называют обычно мультиустойчивыми. Большое разнообразие ультраустойчивых и мультиустойчивых систем дает биология. Примером может служить система регулирования температуры крови у человека и теплокровных животных.
         Задача группировки внешних воздействий, необходимая для успешного выбора способа самонастройки в мультиустойчивых системах, входит в число задач узнавания, или, иначе, задач распознавания образов (См. Распознавание образов). Для определения типа поведения (способа управления) у человека особую роль играют зрительные и звуковые образы. Возможность их распознавания и объединения в те или иные классы позволяет человеку создавать абстрактные понятия, являющиеся непременным условием сознательного познания действительности и началом абстрактного мышления. Абстрактное мышление позволяет создавать в управляющей системе (в данном случае в человеческом мозге) модели различных процессов, осуществлять с их помощью экстраполяцию действительности и определять свои действия на основе такой экстраполяции.
         Таким образом, на высших уровнях иерархии управляющих систем задачи управления оказываются тесно переплетенными с задачами познания окружающей действительности. В чистом виде эти задачи проявляются в абстрактных познающих системах, также являющихся одним из классов кибернетических систем.
         Существенное место в К. занимает Надёжности теория кибернетических систем. Её задачей является разработка методов построения систем, обеспечивающих правильное функционирование систем при выходе из строя части их элементов, разрыве тех или иных связей и др. возможных случайных сбоях или неисправностях.
         Методы кибернетики. Имея в качестве основного объекта исследования кибернетические системы, К. использует для их изучения три принципиально различных метода. Два из них — математико-аналитический и экспериментальный — широко применяются и в др. науках. Сущность первого состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью. В случае уникальности исследуемого объекта и невозможности существенного влияния на него (как, например, в случае Солнечной системы или процесса биологической эволюции) активный эксперимент переходит в пассивное наблюдение.
         Одним из важнейших достижений К. является разработка и широкое использование нового метода исследования, получившего название математического (машинного) эксперимента, или математического моделирования. Смысл его состоит в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его описанием. Описание объекта вместе с программами, реализующими изменения характеристик объекта в соответствии с этим описанием, помещается в память ЭВМ, после чего становится возможным проводить с объектом различные эксперименты: регистрировать его поведение в тех или иных условиях, менять те или иные элементы описания и тому подобное. Огромное быстродействие современных ЭВМ зачастую позволяет моделировать многие процессы в более быстром темпе, чем они происходят в действительности.
         Первым этапом математического моделирования является разбиение изучаемой системы на отдельные блоки и элементы и установление связей между ними. Эту задачу решает так называемый системный анализ. В зависимости от целей исследования глубина и способ такого разбиения могут варьироваться. В этом смысле системный анализ представляет собой скорее искусство, чем точную науку, ибо при анализе действительно сложных систем приходится априори отбрасывать несущественные (с точки зрения поставленной цели) детали и связи.
         После разбиения системы на части и характеристики их теми или иными множествами параметров (количественных или качественных) для установления связи между ними привлекают обычно представителей различных наук. Так, при системном анализе человеческого организма типичные связи имеют следующую форму: «При переходе органа А из состояния k1 в состояние k2 и сохранении органа В в состоянии М орган С через N месяцев с вероятностью р перейдёт из состояния n1 в состояние n2». В зависимости от вида органов, к которым относится указанное высказывание, оно может быть сделано эндокринологом, кардиологом, терапевтом и др. специалистами. В результате их совместной работы возникает комплексное описание организма, представляющее искомую математическую модель.
         Так называемые системные программисты переводят эту модель в машинное представление, программируя одновременно средства, необходимые для экспериментов с ней. Проведение самих экспериментов и получение различных выводов из них составляют предмет операций исследования (См. Операций исследование). Впрочем, исследователи операций в случае, когда это оказывается возможным, могут применить дедуктивно-математические построения и даже воспользоваться натурными моделями всей системы или ее отдельных частей. Задача построения натурных моделей, равно как и задача проектирования и изготовления различных искусственных кибернетических систем, относится к области системотехники.
         Историческая справка. Первым, кто применил термин К. для управления в общем смысле, был по-видимому, древнегреческий философ Платон. Однако реальное становление К. как науки произошло много позже. Оно было предопределено развитием технических средств управления и преобразования информации. Ещё в средние века в Европе стали создавать так называемые андроиды — человекоподобные игрушки, представляющие собой механические, программно управляемые устройства.
         Первые промышленные регуляторы уровня воды в паровом котле и скорости вращения вала паровой машины были изобретены И. И. Ползуновым (Россия) и Дж. Уаттом (Англия). Во 2-й половине 19 в. требовалось построение все более совершенных автоматических регуляторов. Наряду с механическими блоками в них всё чаще начинают применяться электромеханические и электронные блоки. Большую роль в развитии теории и практики автоматического регулирования сыграло изобретение в начале 20 в. дифференциальных анализаторов, способных моделировать и решать системы обыкновенных дифференциальных уравнений. Они положили начало быстрому развитию аналоговых вычислительных машин и их широкому проникновению в технику.
         Немалое влияние на становление К. оказали успехи нейрофизиологии и особенно классические труды И. П. Павлова по условным рефлексам. Можно отметить также оригинальные работы украинского учёного Я. И. Грдины по динамике живых организмов.
         В 30-х гг. 20 в. все большее влияние на становление К. начинает оказывать развитие теории дискретных преобразователей информации. Два основных источника идей и проблем направляли это развитие. Во-первых, задача построения оснований математики. Еще в середине прошлого века Дж. Буль заложил основы современной математический логики. В 20-е гг. 20 в. были заложены основы современной теории алгоритмов. В 1934 К. Гёдель показал ограниченность возможностей замкнутых познающих систем. В 1936 А. М. Тьюринг описал гипотетический универсальный преобразователь дискретной информации, получивший впоследствии назв. Тьюринга машины (См. Тьюринга машина). Эти два результата, будучи полученными в рамках чистой математики, оказали и продолжают оказывать огромное влияние на становление основных идей К.
         Вторым источником идей и проблем К. служила практика создания реальных дискретных преобразователей информации. Простейший механический арифмометр был изобретён Б. Паскалем (См. Паскаль) (Франция) ещё в 17 в. Лишь в 19 в. Ч. Беббидж (Англия) предпринял первую попытку создания автоматического цифрового вычислителя — прообраза современной ЭВМ. К началу 20 века были созданы первые образцы электромеханических счетно-аналитических машин, позволивших автоматизировать простейшие преобразования дискретной информации. Резкое усиление интереса к теории дискретных преобразователей информации в 30-х гг. было обусловлено необходимостью создания сложных релейно-контактных устройств, прежде всего для нужд автоматических телефонных станций. В 1938 К. Шеннон (США), а в 1941 В. И. Шестаков (СССР) показали возможность использования для синтеза и анализа релейно-контактных схем аппарата математической логики. Тем самым было положено начало развитию современной теории автоматов.
         Решающее значение для становления К. имело создание в 40-х гг. 20 в. электронных вычислительных машин (Дж. фон Нейман и др.). Благодаря ЭВМ возникли принципиально новые возможности для исследования и фактического создания действительно сложных управляющих систем. Оставалось объединить весь полученный к этому времени материал и дать название новой науке. Этот шаг был сделан Н. Винером, опубликовавшим в 1948 свою знаменитую книгу «Кибернетика».
         Н. Винер предложил называть К. «науку об управлении и связи в животном и машине». В первой и во второй своей книге («Кибернетика и общество», 1954) Винер уделил большое внимание общефилософским и социальным аспектам новой науки, трактуя их зачастую весьма произвольно. В результате дальнейшее развитие К. пошло двумя различными путями. В США и Западной Европе стало преобладать узкое понимание К., концентрирующее внимание на спорах и сомнениях, поднятых Винером, на аналогиях между процессами управления в технических средствах и живых организмах. В СССР после первоначального периода отрицания и сомнений утверждалось более естественное и содержательное определение К., включившее в нее все достижения, накопленные к тому времени в теории преобразования информации и управляющих систем. При этом особое внимание уделялось новым проблемам, возникающим в связи с широким внедрением ЭВМ в теорию управления и теорию преобразования информации.
         На Западе подобные вопросы развивались в рамках специальных разделов науки, получивших название «информатика», «вычислительная наука», «системный анализ» и др. Лишь к концу 60-х гг. Наметилась тенденция расширения понятия К. и включения в неё всех указанных разделов.
         Основные разделы кибернетики. Современная К. в широком понимании состоит из большого количества разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро К. составляют такие разделы, как теория информации, теория кодирования, теория алгоритмов и автоматов, общая теория систем, теория оптимальных процессов, методы исследования операций, теория распознавания образов, теория формальных языков. На практике центр тяжести интересов К. сместился в область создания сложных систем управления и различного рода систем для автоматизации умственного труда. В чисто познавательном плане одной из наиболее интересных перспективных задач К. является моделирование мозга и его различных функций.
         Основным техническим средством для решения всех указанных задач являются ЭВМ. Поэтому развитие К. как в теоретическом, так и в практическом аспектах тесно связано с прогрессом электронной вычислительной техники. Требования, которые предъявляет К. к развитию своего математического аппарата, определяются указанными выше основными практическими задачами.
         Определённая практическая целенаправленность исследований по развитию математического аппарата как раз и является той гранью, которая отделяет общематематическую от собственно кибернетической части подобных исследований. Так, например, в той части теории алгоритмов, которая строится для нужд оснований математики, стремятся по возможности уменьшить число типов элементарных операций и сделать их достаточно мелкими. Возникающие таким образом алгоритмические языки удобны как объект исследования, но в то же время ими практически неудобно пользоваться для описания реальных задач преобразования информации. Кибернетический аспект теории алгоритмов имеет дело с алгоритмическими языками, специально ориентированными на те или иные классы подобных практических задач. Имеются языки, ориентированные на задачи вычислительного характера, на формульные преобразования, на обработку графической информации и т.п.
         Аналогичное положение имеет место и в др. разделах, составляющих общетеоретический фундамент К. Они представляют собой аппарат для решения практических задач изучения кибернетических систем, их анализа и синтеза, нахождения оптимального управления.
         Особенно большое значение применение кибернетических методов имеет в тех науках, где методы классической математики могут применяться лишь в ограниченных масштабах, для решения отдельных частных задач. К числу таких наук относятся в первую очередь экономика, биология, медицина, языкознание и те области техники, которые имеют дело с большими системами. В результате большого объёма применения кибернетических методов в этих науках произошло выделение самостоятельных научных направлений, которые было бы естественно называть кибернетической экономикой, кибернетической биологией и т.д. Однако в силу ряда причин первоначальное становление указанных направлений происходило в рамках К. за счет специализации объектов исследования, а не в рамках соответствующих наук за счёт применения методов и результатов К. Поэтому указанные направления получили назв. Кибернетика экономическая, Кибернетика биологическая, Кибернетика медицинская, Кибернетика техническая. В языкознании соответствующее научное направление получило наименование математической лингвистики (См. Математическая лингвистика).
         Задачи реального создания сложных управляющих систем (в первую очередь в экономике), а также основанных на использовании ЭВМ сложных справочно-информационных систем, систем автоматизации проектирования, систем для автоматизации сбора и обработки экспериментальных данных и др. относятся обычно к разделу науки, получившему название системотехники (См. Системотехника). При широком толковании предмета К. значительная часть системотехники органически входит в нее. То же положение имеет место в электронной вычислительной технике. Разумеется, К. не занимается расчетами элементов ЭВМ, конструктивным оформлением машин, технологическими проблемами и т.п. Вместе с тем подход к ЭВМ как к системе, общеструктурные вопросы, организация сложных процессов переработки информации и управление этими процессами относятся по существу к прикладной К. и составляют один из её важных разделов.
         Лит.: Винер Н., Кибернетика, пер. с англ., 2 изд., М., 1968; его же, Кибернетика и общество, пер. с англ., М., 1958; Цянь Сюэ-сэнь, Техническая кибернетика, пер. с англ., М., 1956; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959: Глушков В. М., Введение в кибернетику, К., 1964.
         В. М. Глушков.
         0277538720.tif
        Рис. к ст. Кибернетика.
II
Кибернетика («Кибернетика»,)
        научный журнал Академии наук УССР. Издается в Киеве с 1965, выходит 6 раз в год. Публикует оригинальные статьи по математическим и прикладным проблемам кибернетики, а также обзоры новейших достижений советской и зарубежной кибернетики. Тираж (1973) около 4200 экземпляров.
Мультимедийная энциклопедия
информатика, наука о связи и управлении в машинах и живых организмах. Первым употребил термин "кибернетика", по-видимому, древнегреческий философ Платон. Более ста лет назад это слово было использовано А.Ампером, а затем и другими европейскими авторами в более ограниченном социологическом смысле. Оно происходит от греческого слова, означающего "рулевой". Когда в 1948 Норберт Винер использовал этот термин, он не знал о более ранних его употреблениях. Он пытался найти удобный способ объединения различных наук, относящихся к коммуникациям и управлению, под одним именем, которое отражало бы их методологическое единство. Это единство зиждется на статистической идее информации как функции вероятности. Если новая информация превращает набор случайных событий, имеющий первоначальную общую вероятность P, в набор с общей вероятностью p, то это означает, что информация имеет такую же природу и меру, как и энтропия в статистической механике, но противоположный знак. (Дело в том, что энтропия стремится к максимуму при росте неопределенности случайной величины, тогда как информация ведет себя противоположным образом.) При таком подходе теория информации становится ветвью статистической механики, и второй закон термодинамики принимает, с точки зрения теории информации, следующую форму: любая обработка информации от известных источников может только уменьшать численную меру информации. Это, конечно, не означает, что обработка не дает никаких преимуществ или что обрабатывать информацию нецелесообразно. Важно то, что во внимание принимается вся информация, а способ ее обработки не должен налагать на нее каких-либо ограничений. Статистическая концепция информации уже доказала свою пользу в технике связи, анализе проблем кодирования и, до некоторой степени, в исследовании функционирования нервной системы. См. также <<АВТОМАТИЗАЦИЯ>>; <<ИНТЕЛЛЕКТ ИСКУССТВЕННЫЙ>>. ЛИТЕРАТУРА Райниш К. Кибернетические основы и описание непрерывных систем. М., 1978 Винер Н. Кибернетика, или управление и связь в животном и машине. М., 1983 Глушков В.М. Кибернетика: вопросы теории и практики. М., 1983 Фрэнк Дж. Основы кибернетики. М., 1984
Медицинская энциклопедия
I
Кибернетика
в медицине. Кибернетика — наука об общих законах управления в системах любой природы — биологической, технической, социальной. Основной объект исследования в К. — кибернетические системы, рассматриваемые вне зависимости от их материальной природы. Методы К. развиваются вместе с общей теорией систем, теорией автоматического управления, методами математического моделирования и др. Общие законы управления и обобщенные характеристики систем применяются к конкретным областям: биологические объекты исследуются в биокибернетике, медицинские системы и методы управления состоянием организма — в медицинской кибернетике и т.д.
Исторический очерк. Проникновение кибернетических методов в биологию и медицину началось после выхода в 1948 г. книги американского математика Н. Винера «Кибернетика, или управление и связь в животном и машине», ознаменовавшего появление кибернетики как науки. В этой книге впервые была выявлена общность процессов в природе и технике, причем ряд исходных концепций К. базировался на наблюдениях за биологическими объектами. В нашей стране развитие К. было необоснованно заторможено, она была объявлена буржуазной лженаукой, хотя независимо от этого прикладное направление К. — разработка отечественных ЭВМ и первых кибернетических систем — велась под руководством академика С.А. Лебедева с 1949 года. В конце 50-х гг. справедливое положение К. в системе наук было восстановлено, и в 1959 г. усилиями академика А.И. Берга при Президиуме АН СССР был создан научный совет по комплексной проблеме «Кибернетика». Одним из важных направлений работы совета стало развитие биологической и медицинской К. Важную роль в становлении биологической и медицинской кибернетики в СССР сыграли В.В. Ларин и Н.М. Амосов.
В нашей стране в 60-х гг. уже работали экспериментальные автоматизированные медицинские системы. Первая в СССР диагностическая система на основе ЭВМ была создана в 1964 г. в лаборатории кибернетики Института хирургии им. А.В. Вишневского. Эта система автоматически устанавливала диагноз врожденных пороков сердца. В 1969 г. в Институте сердечно-сосудистой хирургии им. А.Н. Бакулева была разработана система автоматической диагностики поражения клапанов сердца.
В 1970 г. в НИИ социальной гигиены и организации здравоохранения им. Н.А. Семашко были созданы первые автоматизированные системы управления (<<Автоматизированная система управления>>), а в 1972 г. в рамках системы АСУ «Больница» была принята в эксплуатацию первая в СССР АСУ медицинского назначения «Аптека». К середине 70-х гг. были разработаны автоматизированные системы для использования в клинике (мониторно-компьютерная система «Симфония» для слежения за состоянием больного во время хирургической операции — 1973 г., автоматизированная система обеспечения решений врача АСОРВ — 1974 г.).
С 1969 г. в ряде медицинских институтов читался факультативный курс «Основы медицинской кибернетики», а в 1979 г. медико-биологический факультет 2-го Московского медицинского института им. Н.И. Пирогова выпустил первых в СССР врачей-кибернетиков.
С середины 80-х гг. кибернетические методы в медицине и здравоохранении получают все большее распространение. Появляются автоматизированные центры диагностики, системы диспансеризации и медицинских осмотров населения. В крупных больницах создаются автоматизированные системы обработки медицинских данных, осуществляется компьютерный учет коечного фонда, в приемных отделениях журнал приема больных ведется на основе ЭВМ.
К концу 80-х гг. только в Москве прямой доступ к ЭВМ получили несколько тысяч врачей и медработников. Например, в Институте сердечно-сосудистой хирургии им. А.Н. Бакулева, где разработана и функционирует система автоматизированного ведения историй болезни, в 1988 г. с компьютерами работало более 400 врачей.
В последние годы роль и место К. в системе наук изменились. Отпочкование от нее информатики (см. <<Информатика>>, в качестве самостоятельной научной и практической области деятельности, вобравшей в себя проблемы создания и использования средств вычислительной техники, вернуло К. в ее классическое русло — науки об общих законах управления.
Основные понятия кибернетики. К. исследует процессы управления, протекающие в живой природе, технических, социальных и других объектах. Главным предметом изучения является система — совокупность элементов, образующих определенную структуру, которая функционирует для достижения какой-либо цели.
Кибернетика изучает общие свойства систем, прежде всего с точки зрения способов управления ими. Особую роль в биологических и медицинских применениях К. играют динамические системы, в которых с течением времени происходят существенные изменения. Элементы системы и связи между ними образуют ее структуру. Внешнее проявление присущих системе свойств, характерные для нее процессы являются функцией системы. Способность систем сохранять свою структуру и функцию в меняющихся условиях характеризуется понятиями надежности и устойчивости. Под устойчивостью системы понимают ее способность с течением времени возвратиться к исходному (или близкому к нему) состоянию после какого-либо возмущения.
На ранних этапах развития К. для описания систем использовался метод черного ящика — описание систем в виде преобразователя входных сигналов в выходные со скрытой внутренней структурой. Понятие черного ящика оказалось неудовлетворительным для описания динамических систем, т.к. оно не учитывает важнейшее их свойство: характер преобразования входных сигналов в выходные меняется в зависимости от текущего внутреннего состояния системы. Поэтому широкое распространение в К. получил метод так называемого пространства состояний, в котором система представлена не только входом и выходом, а тремя характеристиками — входом, состоянием, выходом (см. <<Математические методы>>).
Сохранение неизменности состояния системы при действии возмущении называется гомеостазом. Наиболее широко понятие гомеостаза применяется при анализе физиологических систем. В отличие от обычной устойчивости (возвращение системы к исходному состоянию после снятия возмущения) гомеостаз означает сохранение исходного (или близкого к нему) состояния системы и во время действия возмущающих факторов.
Одной из важнейших функций систем является управление. Целями управления могут быть сохранение структуры, поддержание гомеостаза, реализация различного рода программ. При синтезе систем в К. используются и другие термины, по смыслу близкие к понятию управление, например регуляции (в частности, физиологическая) и регулирование (простые формы управления, в основном в технических системах).
Управление может осуществляться либо полностью без участия человека — автоматическое, либо человеком с использованием технических средств (например, вычислительной техники) — автоматизированное (см. Автоматизированные системы управления (<<Автоматизированная система управления>>)). Общие свойства управляемых систем, в т.ч. и автоматических систем управления, изучаются методами теории управления.
Ведущим понятием К., широко используемым в медицине и биологии, является обратная связь. Если в какой-нибудь системе удается выделить направление «прямой» передачи сигнала, т.е. от входа системы к ее выходу, то любая передача сигналов в противоположном направлении (от выхода ко входу) называется обратной связью. В биологических и медицинских системах, как правило, можно выделить множество прямых и обратных связей. Поэтому в целях упрощения в системе анализируют лишь главную (иногда рассматриваемую в качестве единственной) цепь обратной связи. Обратная связь может быть положительной (когда поступающий обратно с выхода на вход сигнал увеличивает эффект входного воздействия) или отрицательной (когда этот эффект уменьшается). Положительная обратная связь обычно способствует потере устойчивости в системе, а отрицательная повышает устойчивость и обеспечивает поддержание гомеостаза.
В биологических системах, в частности в организме, отрицательная обратная связь встречается в различных формах, а механизмы ее реализации имеют различную природу — гуморальную, нервную и др.
Простейшей формой отрицательной обратной связи в К. является обратная связь по рассогласованию (рис. 1). Прямой канал представлен цепочкой вход — регулятор — объект — выход, обратная связь — передача выходного сигнала V с выхода системы ко входу. Если входной сигнал равен Х (любое постоянное значение входного сигнала называется установкой), а выходной сигнал Y ему не равен, то в системе возникает сигнал рассогласования ? = Х — Y. Этот сигнал усиливается регулятором и преобразуется в сигнал управления Ц, который поступает на вход объекта, изменяя его состояние до тех пор, пока рассогласование не исчезнет. В этом случае достигается желаемое соотношение Y — X. Если на систему действует возмущение V, то это соотношение нарушится, и механизм обратной связи снова заработает, возвращая изменившееся значение к заданному уровню.
Примером анализа управления с применением отрицательной обратной связи в организме может быть процесс прицеливания у стрелка (X — положение центра мишени, Y — положение мушки, регулятор — ц.н.с., объект управления — рука стрелка с оружием). Такие или подобные им отрицательные обратные связи характерны для управления движением вообще.
Другой распространенной формой отрицательной обратной связи в системах любой природы является параметрическая обратная связь, когда выходной сигнал изменяет какие-либо свойства (параметры) одного из звеньев прямого канала — регулятора (рис. 2). Примером такого рода отрицательной обратной связи может служить один из механизмов ауторегуляции в биохимических циклах — подавление конечным продуктом реакции синтеза одного из предшественников.
Биологическая и медицинская кибернетика. Приложение кибернетических методов к анализу биологических систем реализуется в рамках биокибернетики, а весь круг задач, связанных с управлением процессами в организме (включая задачи автоматизации диагностики и лечения, внедрения компьютерных методов в работу медицинского персонала) и в социально-экономических системах охраны здоровья населения, решается в рамках медицинской К. Вопросы компьютеризации медицины, связанные с обработкой биомедицинской информации, в настоящее время относят к информатике (<<Информатика>>).
Биокибернетические исследования ведутся в двух основных направлениях. Во-первых, разрабатываются и используются все более совершенные методы обработки информации при измерении биологических сигналов и получении других данных о состоянии биосистем. Широко применяются методы статистической обработки (корреляционный анализ, методы автоматической классификации и т.п.). Эти методы используют и для анализа больших объемов информации, которые получаются в результате медико-биологических экспериментов, при решении задач дифференциальной диагностики, в медицинской статистике (см. <<Математические методы>>).
Во-вторых, развитие методов биокибернетики идет по пути создания формализованных описаний биологических систем, т.е. построения их моделей (математических или логических). Так, широкое распространение получило математическое моделирование динамических систем с помощью дифференциальных уравнений. Термин «моделирование» используется в К. для описания двух связанных между собой областей исследования систем. Под моделированием понимается процесс разработки математического описания объекта. Известны, например, модели системы кровообращения Гайтона, модель терморегуляции Столвийка и др. Созданы модели практически всех физиологических систем организма, многих патологических процессов, модели экологических систем, поведения человеческих популяций и систем охраны здоровья.
Кроме того, термин «моделирование» означает процесс исследования системы с помощью математических моделей (эквивалентным по содержанию является понятие вычислительного эксперимента). Сущность вычислительного эксперимента состоит в том, что с помощью ЭВМ многократно решают математические уравнения, описывающие свойства биологического объекта в различных условиях и его реакции на внешние воздействия, а результаты различных вариантов решения представляются в удобном для исследователя виде. Полученные в результате вычислительных экспериментов данные анализируются специалистами точно так же, как и результаты обычных медико-биологических экспериментов.
Целями моделирования являются формулировка и обоснование предположений о свойствах биологических объектов (выдвинутые гипотезы в дальнейшем могут проверяться экспериментально); прогноз и оценка действия различных внешних и внутренних факторов на биологические системы (прогноз действия лекарств, оценка эффективности применения гипотетических или реальных технических средств, например искусственных органов); отработка моделей для включения в компьютеризованные системы медицинского назначения (например, построение математической модели определенных физических процессов в тканях при действии излучения для использования в компьютерных томографах).
К биокибернетике примыкает ряд научных направлений: бионика — наука, исследующая свойства организмов с целью их воспроизведения в технических системах; инженерная психология, занимающаяся созданием технических систем, наилучшим образом согласованных с психологическими способностями и возможностями человека, управляющего ими; инженерная физиология, имеющая целью создание технических систем для поддержания жизнедеятельности и работоспособности организма или отдельных физиологических систем.
Медицинская К. занимается разработкой и использованием систем управления а медицине и здравоохранении. В ее рамках создаются методы диагностики и коррекции жизненных процессов в организме (компьютерная диагностика и лечение, способы управления аппаратами и устройствами медицинской техники), ведутся разработка и реализация методов контроля и управления состоянием здоровья на популяционном уровне (управление профилактическими и противоэпидемическими мероприятиями), ставятся и решаются организационные проблемы охраны здоровья населения и задачи управления здравоохранением.
Одним из путей использования кибернетических методов в медицине является разработка автоматизированных систем управления (АСУ). Автоматизированные системы медицинского назначения повышают результативность и эффективность работы врачей и другого медперсонала. Получают распространение компьютеризованные системы доврачебного осмотра и опроса населения, методы компьютерной диагностики, ведение журналов поступления больных и учета коечного фонда медицинских учреждений, разрабатываются и внедряются системы автоматизированного ведения историй болезни. Благодаря внедрению АСУ медицинские учреждения (больницы, поликлиники, лечебные центры) переходят на новые информационные технологии: вся обработка медицинской информации в пределах учреждения производится в безбумажной форме. Медперсонал прямо со своих рабочих мест вводит информацию в ЭВМ, получает на экране дисплея результаты ее обработки, имея доступ к общей базе данных. На бумагу (получение так называемых твердых копий) информация выводится только в необходимых случаях, например при выдаче на руки больному выписок или документов, для составления некоторых форм отчетности.
Рабочее место медработника, на котором установлена персональная ЭВМ или терминал единой сети ЭВМ, позволяющие получать доступ к информационным базам данных и работать с ними, называется автоматизированным рабочим местом (АРМ) врача. Разработка АРМ ориентируется на создание интеллектуального помощника врача, поэтому ЭВМ выступает не только как средство хранения и вывода нужной информации, но и берет на себя многие функции, возлагавшиеся ранее на человека (например, выписка рецептов с автоматической проверкой совместимости лекарств). Для более сложных ситуаций существуют специальные системы, использующие знания и опыт экспертов. Экспертные системы позволяют получать врачебные рекомендации и логические выводы даже в том случае, когда алгоритм решения задачи неизвестен, а при необходимости объясняют причины принятия решений и рекомендаций на языке, понятном пользователю.
Перспективы. Основным средством внедрения кибернетических методов в медицину являются ЭВМ и соответствующее программное обеспечение. Развитие и удешевление средств вычислительной техники, повышение их надежности, распространение персональных компьютеров, растущая сложность применяемых в медицинской практике средств и методов являются причинами алгоритмизации многих областей медицины и использования в них ЭВМ. Компьютеризованные методы широко применяются в ряде научно-исследовательских и клинических центров Москвы, Ленинграда, Киева, Барнаула и других городов.
Библиогр.: Воробьев Е.И. и Китов А.И. Медицинская кибернетика, М., 1983; Инженерная физиология и моделирование систем организма, под ред. В.Н. Новосельцева, Новосибирск, 1987; Новосельцев В.Н. Теория управления и биосистемы, М., 1978; Основы инженерной психологии, под ред. Б.Ф. Ломова, М., 1986; Тихонов А.Н., Арсенин В.Я. и Тимонов А.А. Математические задачи компьютерной томографии, М., 1987.
Рис. 1. Схема отрицательной обратной связи по рассогласованию: Х — входной сигнал; Y — выходной сигнал; V — возмущение; ? — сигнал рассогласования, U — сигнал управления. Рис. 2. Схема параметрической обратной связи: X — входной сигнал; Y — выходной сигнал; V — возмущение, U — сигнал управления.
II
Кибернетика (греч. kybernetike искусство управления)
наука об управлении и переработке информации в любых системах: биологических, технических, экономических, в коллективах людей и т.д.
Орфографический словарь Лопатина
киберн`етика, киберн`етика, -и
Словарь Ожегова
КИБЕРН’ЕТИКА [нэ ], -и, жен. Наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе.
прил. кибернетический, -ая, -ое.
Толковый словарь Ефремовой
[кибернетика]
ж.
1) Научная дисциплина, изучающая общие закономерности процессов управления и передачи информации в организованных системах (в машинах, живых организмах и обществе).
2) Учебный предмет, содержащий теоретические основы данной дисциплины.
3) разг. Учебник, излагающий содержание данного учебного предмета.
Социологический Энциклопедичечкий Словарь
КИБЕРНЕТИКА (от греч. kyberne - tice - искусство управления) - англ. cybernetics; нем. Kybernetik. Наука об общих законах получения, хранения, передачи и переработки информации в машинах, живых организмах, обществе. В зависимости от области применения различают полит., экон. и соц. К.
История философии. Энциклопедия
КИБЕРНЕТИКА (древнегреч. kybernetike, (techne) - "искусство управления") - отрасль знания, суть которого была сформулирована Винером как наука "о связи, управлении и контроле в машинах и живых организмах..." в книге "Кибернетика, или Управление и связь в животном и машине" (1948). В 1959 академик А.Н.Колмогоров писал: "...Сейчас уже поздно спорить о степени удачи Винера, когда он... в 1948 году выбрал для новой науки название кибернетика. Это название достаточно установилось и воспринимается как новый термин, мало связанный с греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы целесообразности в машинах и философскому анализу изучаемого ею круга явлений ...". К. возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии (до этого слабо связанных между собой), и с начала 1950-х (наряду с физикой, химией и биологией) стала оказывать существенное влияние на развитие мировой науки. Тектология (всеобщая организационная наука) Богданова (СССР, 1920-е) предшествовала К. у Винера (как минимум, в ее системной части; причем в своих работах Богданов применял лишь качественные методы). Для К. центральное значение имеет понятие "информация", которая, по Винеру, является обозначением "... содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств...". Т.е. для Винера информация - это знание, имеющее одну ценностную меру по отношению к внешней среде (семантика) и другую ценностную меру по отношению к накопленным получателем знаниям, целям познания (прагматика). При этом Винер интерпретировал любую информацию, вне зависимости от ее конкретного содержания и назначения, как выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), что позволило начать исследования всех процессов при помощи разработанного им единого аппарата математической статистики (откуда берет начало идея о К. как общей теории управления и связи - первое основание К.). В К. "связь" - это процессы восприятия информации, ее хранения и передачи; "управление" - это процессы переработки воспринятой информации в сигналы, корректирующие функционирование кибернетической системы. Если система в состоянии самостоятельно воспринимать и применять информацию о результатах своего функционирования, то такая система обладает средствами обратной связи, причем переработку такого рода информации в сигналы, корректирующие функционирование системы, в К. называют "контролем (регулированием)". Осуществляющие связь, управление или контроль элементы кибернетической системы рассматриваются в К. исключительно как носители (преобразователи) информации. Определяющее значение имеет в К. понятие "количество информации" (количество выбора), введенное в явной форме основоположником теории информации К.Э.Шенноном. Количество информации (по Винеру - отрицательная энтропия) является, как и количество вещества, и количество энергии, одной из фундаментальных характеристик явлений природы. Второе основание К.,- интерпретация ее Винером как теории организации, теории борьбы с мировым Хаосом, с возрастанием энтропии. Колмогоров писал: "...С точки зрения кибернетики, конкретная материальная природа хранящих, передающих или перерабатывающих информацию элементов кибернетической системы, как и количество затрачиваемой на их работу энергии, являются подчиненными обстоятельствами. В процессе эволюции живых организмов возникли тончайшие механизмы хранения огромного количества информации в ничтожных объемах памяти (например, механизм наследственности, сохраняющий в одной клетке весь запас видовых признаков взрослого организма), а также механизмы, способные воспринимать и перерабатывать огромное количество новой информации с ничтожной затратой энергии (например, механизмы памяти и мышления в коре головного мозга) ...". Функционирующий элемент кибернетической системы воспринимает информацию из внешней среды и применяет ее для выбора адекватного поведения. По Винеру, информация никогда не создается, она только передается и принимается, но при этом искажается "шумом" (помехами) на пути к объекту и внутри его; и для этого объекта может быть потеряна. Борьба с энтропией - это борьба с "шумом", искажением информации (выступающим как бы "семантической сущностью" материи, которая при этом отождествляется с одновременно взаимодействующими веществом, энергией, информацией и знаниями, которые все находятся во взаимопереходах из одного в другой в соответствии с законами сохранения; причем в этих взаимодействиях вещество выступает "носителем" знания, а энергия выступает "носителем" информации). В К. постулирован принцип единства информации и управления (базисно важный для анализа сущности процессов, протекающих в самоорганизующихся технических и биосоциальных системах). Винер полагал, что процесс управления в таких системах является процессом переработки некоторым центральным устройством информации, получаемой от сенсор-рецепторов (источников первичной информации) и передачи ее туда, где она будет восприниматься как требование выполнения определенного действия. По завершении этого действия сенсор-рецепторы приводятся в готовность к передаче информации об изменении ситуации для исполнения следующего управленческого цикла. Главная роль в движении информации по системе и данном циклическом алгоритме управления принадлежит содержанию информации, передаваемой сенсор-рецепторами и центральным устройством. В связи с этим Колмогоров писал, что "... регулирующие механизмы второго порядка, которые накапливают информацию о результатах деятельности того или иного управляющего или регулирующего механизма первого порядка, способны использовать эту информацию для целесообразного изменения устройства и способа действий этого механизма первого порядка. Классическим образцом такого регулирования второго порядка является механизм выработки условных рефлексов. Над системой уже установившихся, выработанных рефлексов, т.е. связей между внешними раздражителями и реакциями организма, здесь господствует механизм выработки новых рефлексов. Входными сигналами для этого механизма являются "подкрепления", получаемые в случае соответствия реакции нуждам организма, и "торможения" - в случае несоответствия...". Категория "управление" является базисной категорией К. Все другие категории субординированы (координированы) этой категорией. (Необходимо отметить, что существует подход к К. как к науке, изучающей способы создания, раскрытия строения и тождественного преобразования алгоритмов, описывающих процессы управления, протекающие в действительности.) Смысл категории "управление" в К. может быть раскрыт только через более общие категории структуры и функции, причинности и целесообразности и других "невнутренних" категорий К. В общем случае управление в кибернетической системе представляет собой цикл, совершаемый в контуре информационных обменов, состоящего из органа управления, каналов прямой и обратной связи. Управляющие воздействия представляют собой информацию управления (информацию о дальнейших надлежащих действиях объекта управления). Сведения о состоянии объекта и другие данные, поступающие от объекта органу управления, являются информацией состояния. Фактически управление - это совокупность процесса сбора, обработки, преобразования и передачи информации для осуществления целенаправленного функционирования любой кибернетической системы, которая должна осуществлять такие процессы и включать в себя исполнителя, источник-накопитель энергии, источник и приемник сигналов, систему передачи сигналов от источника к исполнителю. В предельном состоянии кибернетическая система полностью неопределенна с максимумом энтропии. В процессе функционирования системы, при потреблении ею энергии она потребляет информацию, уменьшающую разнообразие (неопределенность) и делающая поведение системы предсказуемым; энтропия уменьшается. Поступление информации позволяет управлять кибернетическими системами. Информация уменьшает разнообразие, а это - главный метод регулирования. Наличие в кибернетической системе помех в каналах информационных обменов ("шума") ведет к увеличению разнообразия (энтропии), не увеличивая содержания информации. Если энтропия кибернетической системы возрастает, то система деградирует. Для противодействия деградации в кибернетическую систему за счет затрат энергии вводят негэнтропию (дополнительную информацию), т.к. естественным состоянием любой системы, обладающей способностью изменять свои стохастические характеристики, является рост энтропии (потеря информации). Условия осуществимости управления: 1) детерминированность (наличие причинно-следственных связей между компонентами) системы; 2) динамичность системы; 3) наличие управляющего параметра, воздействием на который возможно изменять направление трансформаций; 4) свойство усиления (способность системы претерпевать существенные пространственно-временные и/или энергетические трансформации под воздействием малых изменений управляющего параметра). Т.к. системы имеют протяженность в пространстве, то Г) воздействие управляющего параметра и трансформация системы разнесены во времени; 2) управляющий параметр и объект управления имеют различную физическую природу; 3) в подсистемах управления производится хранение, преобразование и передача управляющей информации. Содержание процесса управления характеризуется целью управления - гомеостазисом - уравновешиванием системы с трансформирующейся внешней средой, эффективным противодействием деструктивным воздействиям внешней среды для стабилизации жизненно важных параметров кибернетической системы. Эффективными считают кибернетические системы, которые для достижения одинаковых целей применяют минимальное количество информации. Все остальные системы аналогичного назначения - информационно-избыточны. Существует непосредственная связь между управлением и превращением энергии: по Г.Н.Алексееву, "...управление сводится к изменению потока энергии того или иного вида в различных системах... Активное воздействие человека на природу, т.е. труд, возможно рассматривать как управление энергетическими потоками внешней природы, причем источником энергии для этого служит сама природа, а трудовая деятельность совершается только тогда, когда энергии получается больше, чем затрачивается...". П.Г.Кузнецов утверждает, что "такой механизм обмена возможен, если внутри человеческого организма имеется логическое управляющее устройство, которое работает по следующей программе: 1) "запоминает" физическую последовательность мышечных движений; 2) "вычисляет" полную величину затрат энергии на них; 3) "запоминает" последовательность результатов воздействия на природу; 4) "вычисляет" эффективность трудового процесса; 5) производит "логическую" операцию: принимает программу последовательности движений, если эффективность выше средней, и отвергает, если ниже...". Г.Н.Алексеев отмечает при этом, что "...по такой программе в принципе возможно построить... действие любого устройства, которое ведет активный поиск оптимального режима управления, описывается подобной программой и имеет конечной целью экономию расходования энергии. Следовательно, общественная деятельность людей в процессе производства есть неэквивалентный обмен энергией с природой, в результате которого должен увеличиться энергетический бюджет общества (или, соответственно, негэнтропия)...". По Л.Бриллюэну, главный критерий кибернетических систем - их энергоэнтропийная эффективность, т.е. отношение увеличения негэнтропии (приобретенной информации) к увеличению энтропии во внешних системах (источниках энергии). На современном этапе развития К., в состоявшихся как научное направление работах по созданию искусственного интеллекта (кибернетического разума), обнаруживается спектр самых разнообразных взглядов на возможность построения рассуждающих систем, основанных на знаниях. Рассматривая возможность создания искусственного интеллекта (кибернетического разума) на основе кибернетического моделирования, необходимо отметить то, что в К. моделируются только функции мозга, поддающиеся логической обработке (т.е. связанные с получением, обработкой и выдачей информации). Все остальные самые разнообразные функции человеческого мозга остаются за рамками К. Например, многие понятия К. антропоморфны: на кибернетические системы перенесены (правомерно или нет) понятия цели, выбора, решения, условного рефлекса, памяти и др. Однако "... существуют такие функции человека, которые не могут выполняться компьютерами. И это объясняется не ограниченностью их возможностей, а тем, что такие чувства, как уважение, понимание и любовь, попросту не являются техническими проблемами..." (J.Weisenbaum). Общепризнано, что единственным субъектом мышления пока является человек, вооруженный всеми средствами, которыми он располагает на данном уровне своего развития. В число этих средства входят кибернетические машины, в которых материализованы результаты человеческого труда. Человек будет передавать машине лишь некоторые функции, выполняемые им в процессе мышления. В аргументации против возможности создания искусственного интеллекта (кибернетического разума) фактически наличествует указание на спектр действий мышления, которые неспособна выполнить никакая кибернетическая система. Человек есть не только природное существо, его основные характеристики - продукт социального, а не чисто биологического развития. Следовательно, мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество. Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения "разумность" системы определяется количеством обрабатываемой в ней информации, поэтому система в информационно-бедной среде не может стать достаточно "разумной". В направлении искусственного интеллекта (кибернетического разума) большинство исследователей под интеллектом понимают спектр способностей любой кибернетической системы к достижению одной из множества возможных целей во множестве разнообразных сред. Знания в К. дифференцируют от интеллекта так, что знания - это полезная информация, накопленная и сохраненная кибернетической системой в процессе ее деятельности, а интеллект - это определяющая способность кибернетической системы предсказывать состояния внешних сред в ассоциации с возможностью преобразовывать любое предсказание в адекватную реакцию, ведущую к заданной цели. Логическая машина отличается от мозга человека тем, что не может иметь сразу несколько взаимоисключающих программ деятельности. Мозг человека всегда их имеет, поэтому-то он и представляет собой "поле битвы у людей святых" или же "пепелище противоречий у людей более обычных". Кибернетические устройства проявляют себя тем лучше, чем больше точности, алгоритмизации требует задание, их происхождение от цифровых компьютеров мстит за себя. Если ситуация чрезмерно усложняется, а количество новых факторов слишком возрастает, то робот теряется. Человек старается опереться на догадку (приближенное решение) и ему это иногда удается, а робот этого не умеет. Он должен все учесть точно и ясно, и если это невозможно, то он человеку проигрывает. Однако в опасной ситуации робот не "теряет головы", так как он не ощущает страха и угроза гибели ему безразлична. В таких ситуациях самообладание может компенсировать нехватку интуиции. Робот пытается овладеть ситуацией до последнего мгновения, даже тогда, когда он видит, что проиграл. Хотя с точки зрения людей это иррационально, с точки зрения робота это всего лишь логично, ибо он так решил. Творческих способностей у роботов мало, так как они неотделимы от интуиции (Лем). Реализация действительно искусственного интеллекта будет возможна, если системы, основанные на знаниях, начнут осмысленно (в человеческом понимании) обрабатывать упаковки знаний, построенных для множества проблем, в принципе недоступных мышлению человека. При решении спектра проблем, возникающих в процессе построения эффективных форм и средств информационного обмена, возникает необходимость решения проблемы однозначной объективации знаний - размещения фрагментов знаний в интегрированных упаковках, в которых они смогут перемещаться по каналам информационного обмена, Таковой упаковкой может быть фраза любого языка, книга, изображение, гипертекст и др. Для всех видов упаковок общим является то, что в любых условиях они должны поддерживать "семантическую безопасность" размещенных знаний, которые, кроме этого, должны быть декларативными и способными к выводу знаний повышенной общности из упакованных структур связей-отношений и понятий. Получатель и отправитель таких упаковок должны применять единую систему правил их объективации и восприятия - формализм объективации знаний (естественным человеку формализмом является устная речь и письменность). В языковой форме возможно выражение не всякого знания, знание же, невыразимое в лингвистических конструкциях, не включается в процессы информационных обменов. При помощи естественного языка как одной из форм объективации знаний осуществляется человеческое общение, при этом одному и тому же фрагменту знания придаются различные вербальные и/или текстовые формы. В направлениях научного знания построены лингвистические редуценты (сужение языка естественного; при этом необходимо особо выделить язык математики как основу изложения систем знаний в естествознании; свой язык имеют философия, физика и др.). Применение лингвистических редуцент существенно повышает надежность процессов информационного обмена при одновременном снижении вероятности некорректного толкования передаваемой информации. Определяющими достоинствами лингвистических редуцент являются снятие смысловой многозначности естественного языка, привносящей семантический "шум" в каналы информационного обмена, и возможность построения стандартизированных упаковок фрагментов знаний. Обобщающий характер кибернетических идей и методов, задача обоснования таких исходных понятий К., как "информация", "управление", "обратная связь" и др., требуют выхода в более широкую, философскую область знаний. К., достижения которой имеют исключительное значение для исследования познавательных процессов, по своей сущности и содержанию фактически входит в современную теорию познания. Исследование методологического и гносеологического аспектов К. способствует решению философских проблем понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Большой важности философский результат К. заключается в том, что ряд функций мышления, ранее считавшихся исключительной прерогативой живого мозга человека, оказался воспроизводимым в кибернетических устройствах. (См. также Виртуальная реальность, Винер.)
C. B. Силков
История философии. Грицианов
(древнегреч. kybernetike (techne) — ‘искусство управления’) — отрасль знания, суть которого была сформулирована Винером как наука ‘о связи, управлении и контроле в машинах и живых организмах...’ в книге ‘Кибернетика, или Управление и связь в животном и машине’ (1948). В 1959 академик А.Н.Колмогоров писал: ‘...Сейчас уже поздно спорить о степени удачи Винера, когда он... в 1948 году выбрал для новой науки название кибернетика. Это название достаточно установилось и воспринимается как новый термин, мало связанный с греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы целесообразности в машинах и философскому анализу изучаемого ею круга явлений ...’. К. возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии (до этого слабо связанных между собой), и с начала 1950-х (наряду с физикой, химией и биологией) стала оказывать существенное влияние на развитие мировой науки. Тектология (всеобщая организационная наука) Богданова (СССР, 1920-е) предшествовала К. у Винера (как минимум, в ее системной части; причем в своих работах Богданов применял лишь качественные методы). Для К. центральное значение имеет понятие ‘информация’, которая, по Винеру, является обозначением ‘... содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств...’. Т.е. для Винера информация — это знание, имеющее одну ценностную меру по отношению к внешней среде (семантика) и другую ценностную меру по отношению к накопленным получателем знаниям, целям познания (прагматика). При этом Винер интерпретировал любую информацию, вне зависимости от ее конкретного содержания и назначения, как выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), что позволило начать исследования всех процессов при помощи разработанного им единого аппарата математической статистики (откуда берет начало идея о К. как общей теории управления и связи — первое основание К.). В К. ‘связь’ — это процессы восприятия информации, ее хранения и передачи; ‘управление’ — это процессы переработки воспринятой информации в сигналы, корректирующие функционирование кибернетической системы. Если система в состоянии самостоятельно воспринимать и применять информацию о результатах своего функционирования, то такая система обладает средствами обратной связи, причем переработку такого рода информации в сигналы, корректирующие функционирование системы, в К. называют ‘контролем (регулированием)’. Осуществляющие связь, управление или контроль элементы кибернетической системы рассматриваются в К. исключительно как носители (преобразователи) информации. Определяющее значение имеет в К. понятие ‘количество информации’ (количество выбора), введенное в явной форме основоположником теории информации К.Э.Шенноном. Количество информации (по Винеру — отрицательная энтропия) является, как и количество вещества, и количество энергии, одной из фундаментальных характеристик явлений природы. Второе основание К.,— интерпретация ее Винером как теории организации, теории борьбы с мировым Хаосом, с возрастанием энтропии. Колмогоров писал: ‘...С точки зрения кибернетики, конкретная материальная природа хранящих, передающих или перерабатывающих информацию элементов кибернетической системы, как и количество затрачиваемой на их работу энергии, являются подчиненными обстоятельствами. В процессе эволюции живых организмов возникли тончайшие механизмы хранения огромного количества информации в ничтожных объемах памяти (например, механизм наследственности, сохраняющий в одной клетке весь запас видовых признаков взрослого организма), а также механизмы, способные воспринимать и перерабатывать огромное количество новой информации с ничтожной затратой энергии (например, механизмы памяти и мышления в коре головного мозга) ...’. Функционирующий элемент кибернетической системы воспринимает информацию из внешней среды и применяет ее для выбора адекватного поведения. По Винеру, информация никогда не создается, она только передается и принимается, но при этом искажается ‘шумом’ (помехами) на пути к объекту и внутри его; и для этого объекта может быть потеряна. Борьба с энтропией — это борьба с ‘шумом’, искажением информации (выступающим как бы ‘семантической сущностью’ материи, которая при этом отождествляется с одновременно взаимодействующими веществом, энергией, информацией и знаниями, которые все находятся во взаимопереходах из одного в другой в соответствии с законами сохранения; причем в этих взаимодействиях вещество выступает ‘носителем’ знания, а энергия выступает ‘носителем’ информации). В К. постулирован принцип единства информации и управления (базисно важный для анализа сущности процессов, протекающих в самоорганизующихся технических и биосоциальных системах). Винер полагал, что процесс управления в таких системах является процессом переработки некоторым центральным устройством информации, получаемой от сенсор-рецепторов (источников первичной информации) и передачи ее туда, где она будет восприниматься как требование выполнения определенного действия. По завершении этого действия сенсор-рецепторы приводятся в готовность к передаче информации об изменении ситуации для исполнения следующего управленческого цикла. Главная роль в движении информации по системе и данном циклическом алгоритме управления принадлежит содержанию информации, передаваемой сенсор-рецепторами и центральным устройством. В связи с этим Колмогоров писал, что ‘... регулирующие механизмы второго порядка, которые накапливают информацию о результатах деятельности того или иного управляющего или регулирующего механизма первого порядка, способны использовать эту информацию для целесообразного изменения устройства и способа действий этого механизма первого порядка. Классическим образцом такого регулирования второго порядка является механизм выработки условных рефлексов. Над системой уже установившихся, выработанных рефлексов, т.е. связей между внешними раздражителями и реакциями организма, здесь господствует механизм выработки новых рефлексов. Входными сигналами для этого механизма являются ‘подкрепления’, получаемые в случае соответствия реакции нуждам организма, и ‘торможения’ — в случае несоответствия...’. Категория ‘управление’ является базисной категорией К. Все другие категории субординированы (координированы) этой категорией. (Необходимо отметить, что существует подход к К. как к науке, изучающей способы создания, раскрытия строения и тождественного преобразования алгоритмов, описывающих процессы управления, протекающие в действительности.) Смысл категории ‘управление’ в К. может быть раскрыт только через более общие категории структуры и функции, причинности и целесообразности и других ‘невнутренних’ категорий К. В общем случае управление в кибернетической системе представляет собой цикл, совершаемый в контуре информационных обменов, состоящего из органа управления, каналов прямой и обратной связи. Управляющие воздействия представляют собой информацию управления (информацию о дальнейших надлежащих действиях объекта управления). Сведения о состоянии объекта и другие данные, поступающие от объекта органу управления, являются информацией состояния. Фактически управление — это совокупность процесса сбора, обработки, преобразования и передачи информации для осуществления целенаправленного функционирования любой кибернетической системы, которая должна осуществлять такие процессы и включать в себя исполнителя, источник-накопитель энергии, источник и приемник сигналов, систему передачи сигналов от источника к исполнителю. В предельном состоянии кибернетическая система полностью неопределенна с максимумом энтропии. В процессе функционирования системы, при потреблении ею энергии она потребляет информацию, уменьшающую разнообразие (неопределенность) и делающая поведение системы предсказуемым; энтропия уменьшается. Поступление информации позволяет управлять кибернетическими системами. Информация уменьшает разнообразие, а это — главный метод регулирования. Наличие в кибернетической системе помех в каналах информационных обменов (‘шума’) ведет к увеличению разнообразия (энтропии), не увеличивая содержания информации. Если энтропия кибернетической системы возрастает, то система деградирует. Для противодействия деградации в кибернетическую систему за счет затрат энергии вводят негэнтропию (дополнительную информацию), т.к. естественным состоянием любой системы, обладающей способностью изменять свои стохастические характеристики, является рост энтропии (потеря информации). Условия осуществимости управления: 1) детерминированность (наличие причинно-следственных связей между компонентами) системы; 2) динамичность системы; 3) наличие управляющего параметра, воздействием на который возможно изменять направление трансформаций; 4) свойство усиления (способность системы претерпевать существенные пространственно-временные и/или энергетические трансформации под воздействием малых изменений управляющего параметра). Т.к. системы имеют протяженность в пространстве, то Г) воздействие управляющего параметра и трансформация системы разнесены во времени; 2) управляющий параметр и объект управления имеют различную физическую природу; 3) в подсистемах управления производится хранение, преобразование и передача управляющей информации. Содержание процесса управления характеризуется целью управления — гомеостазисом — уравновешиванием системы с трансформирующейся внешней средой, эффективным противодействием деструктивным воздействиям внешней среды для стабилизации жизненно важных параметров кибернетической системы. Эффективными считают кибернетические системы, которые для достижения одинаковых целей применяют минимальное количество информации. Все остальные системы аналогичного назначения — информационно-избыточны. Существует непосредственная связь между управлением и превращением энергии: по Г.Н.Алексееву, ‘...управление сводится к изменению потока энергии того или иного вида в различных системах... Активное воздействие человека на природу, т.е. труд, возможно рассматривать как управление энергетическими потоками внешней природы, причем источником энергии для этого служит сама природа, а трудовая деятельность совершается только тогда, когда энергии получается больше, чем затрачивается...’. П.Г.Кузнецов утверждает, что ‘такой механизм обмена возможен, если внутри человеческого организма имеется логическое управляющее устройство, которое работает по следующей программе: 1) ‘запоминает’ физическую последовательность мышечных движений; 2) ‘вычисляет’ полную величину затрат энергии на них; 3) ‘запоминает’ последовательность результатов воздействия на природу; 4) ‘вычисляет’ эффективность трудового процесса; 5) производит ‘логическую’ операцию: принимает программу последовательности движений, если эффективность выше средней, и отвергает, если ниже...’. Г.Н.Алексеев отмечает при этом, что ‘...по такой программе в принципе возможно построить... действие любого устройства, которое ведет активный поиск оптимального режима управления, описывается подобной программой и имеет конечной целью экономию расходования энергии. Следовательно, общественная деятельность людей в процессе производства есть неэквивалентный обмен энергией с природой, в результате которого должен увеличиться энергетический бюджет общества (или, соответственно, негэнтропия)...’. По Л.Бриллюэну, главный критерий кибернетических систем — их энергоэнтропийная эффективность, т.е. отношение увеличения негэнтропии (приобретенной информации) к увеличению энтропии во внешних системах (источниках энергии). На современном этапе развития К., в состоявшихся как научное направление работах по созданию искусственного интеллекта (кибернетического разума), обнаруживается спектр самых разнообразных взглядов на возможность построения рассуждающих систем, основанных на знаниях. Рассматривая возможность создания искусственного интеллекта (кибернетического разума) на основе кибернетического моделирования, необходимо отметить то, что в К. моделируются только функции мозга, поддающиеся логической обработке (т.е. связанные с получением, обработкой и выдачей информации). Все остальные самые разнообразные функции человеческого мозга остаются за рамками К. Например, многие понятия К. антропоморфны: на кибернетические системы перенесены (правомерно или нет) понятия цели, выбора, решения, условного рефлекса, памяти и др. Однако ‘... существуют такие функции человека, которые не могут выполняться компьютерами. И это объясняется не ограниченностью их возможностей, а тем, что такие чувства, как уважение, понимание и любовь, попросту не являются техническими проблемами...’ (J.Weisenbaum). Общепризнано, что единственным субъектом мышления пока является человек, вооруженный всеми средствами, которыми он располагает на данном уровне своего развития. В число этих средства входят кибернетические машины, в которых материализованы результаты человеческого труда. Человек будет передавать машине лишь некоторые функции, выполняемые им в процессе мышления. В аргументации против возможности создания искусственного интеллекта (кибернетического разума) фактически наличествует указание на спектр действий мышления, которые неспособна выполнить никакая кибернетическая система. Человек есть не только природное существо, его основные характеристики — продукт социального, а не чисто биологического развития. Следовательно, мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество. Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения ‘разумность’ системы определяется количеством обрабатываемой в ней информации, поэтому система в информационно-бедной среде не может стать достаточно ‘разумной’. В направлении искусственного интеллекта (кибернетического разума) большинство исследователей под интеллектом понимают спектр способностей любой кибернетической системы к достижению одной из множества возможных целей во множестве разнообразных сред. Знания в К. дифференцируют от интеллекта так, что знания — это полезная информация, накопленная и сохраненная кибернетической системой в процессе ее деятельности, а интеллект — это определяющая способность кибернетической системы предсказывать состояния внешних сред в ассоциации с возможностью преобразовывать любое предсказание в адекватную реакцию, ведущую к заданной цели. Логическая машина отличается от мозга человека тем, что не может иметь сразу несколько взаимоисключающих программ деятельности. Мозг человека всегда их имеет, поэтому-то он и представляет собой ‘поле битвы у людей святых’ или же ‘пепелище противоречий у людей более обычных’. Кибернетические устройства проявляют себя тем лучше, чем больше точности, алгоритмизации требует задание, их происхождение от цифровых компьютеров мстит за себя. Если ситуация чрезмерно усложняется, а количество новых факторов слишком возрастает, то робот теряется. Человек старается опереться на догадку (приближенное решение) и ему это иногда удается, а робот этого не умеет. Он должен все учесть точно и ясно, и если это невозможно, то он человеку проигрывает. Однако в опасной ситуации робот не ‘теряет головы’, так как он не ощущает страха и угроза гибели ему безразлична. В таких ситуациях самообладание может компенсировать нехватку интуиции. Робот пытается овладеть ситуацией до последнего мгновения, даже тогда, когда он видит, что проиграл. Хотя с точки зрения людей это иррационально, с точки зрения робота это всего лишь логично, ибо он так решил. Творческих способностей у роботов мало, так как они неотделимы от интуиции (Лем). Реализация действительно искусственного интеллекта будет возможна, если системы, основанные на знаниях, начнут осмысленно (в человеческом понимании) обрабатывать упаковки знаний, построенных для множества проблем, в принципе недоступных мышлению человека. При решении спектра проблем, возникающих в процессе построения эффективных форм и средств информационного обмена, возникает необходимость решения проблемы однозначной объективации знаний — размещения фрагментов знаний в интегрированных упаковках, в которых они смогут перемещаться по каналам информационного обмена, Таковой упаковкой может быть фраза любого языка, книга, изображение, гипертекст и др. Для всех видов упаковок общим является то, что в любых условиях они должны поддерживать ‘семантическую безопасность’ размещенных знаний, которые, кроме этого, должны быть декларативными и способными к выводу знаний повышенной общности из упакованных структур связей-отношений и понятий. Получатель и отправитель таких упаковок должны применять единую систему правил их объективации и восприятия — формализм объективации знаний (естественным человеку формализмом является устная речь и письменность). В языковой форме возможно выражение не всякого знания, знание же, невыразимое в лингвистических конструкциях, не включается в процессы информационных обменов. При помощи естественного языка как одной из форм объективации знаний осуществляется человеческое общение, при этом одному и тому же фрагменту знания придаются различные вербальные и/или текстовые формы. В направлениях научного знания построены лингвистические редуценты (сужение языка естественного; при этом необходимо особо выделить язык математики как основу изложения систем знаний в естествознании; свой язык имеют философия, физика и др.). Применение лингвистических редуцент существенно повышает надежность процессов информационного обмена при одновременном снижении вероятности некорректного толкования передаваемой информации. Определяющими достоинствами лингвистических редуцент являются снятие смысловой многозначности естественного языка, привносящей семантический ‘шум’ в каналы информационного обмена, и возможность построения стандартизированных упаковок фрагментов знаний. Обобщающий характер кибернетических идей и методов, задача обоснования таких исходных понятий К., как ‘информация’, ‘управление’, ‘обратная связь’ и др., требуют выхода в более широкую, философскую область знаний. К., достижения которой имеют исключительное значение для исследования познавательных процессов, по своей сущности и содержанию фактически входит в современную теорию познания. Исследование методологического и гносеологического аспектов К. способствует решению философских проблем понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Большой важности философский результат К. заключается в том, что ряд функций мышления, ранее считавшихся исключительной прерогативой живого мозга человека, оказался воспроизводимым в кибернетических устройствах. (см. также ВИРТУАЛЬНАЯ РЕАЛЬНОСТЬ, ВИНЕР.)
Философский словарь
(греч. kybemetike — искусство управления) — наука об общих чертах процессов и систем управления в технических устройствах, живых организмах и человеческих организациях. Впервые принципы К. изложены в работах Винера. Возникновение К. было подготовлено рядом технических и естественнонаучных достижений в области теории автоматического регулирования; радиоэлектроники, позволившей сконструировать быстродействующие следящие и программно-управляемые вычислительные устройства;вероятностей теории в связи с применением ее к исследованию проблем передачи и преобразования информации; математической логики и теории алгоритмов; физиологии нервной деятельности и работ по гомеостазису. В отличие от устройств, преобразующих энергию или вещество, для кибернетических систем характерны процессы переработки информации. В изучении систем управления К. сочетает макро- и микроподходы. Макроподход применяется в случае, когда внутреннее строение системы неизвестно, а наблюдается лишь движение информации на ее “выходе” и “входе” (поступающая в систему информация и реакция системы). Таким способом выявляются осн. потоки информации и конечные функции системы управления. Этот тип задач получил название проблем “черного ящика”. Микроподход предполагает определенное знание о внутреннем строении системы управления и связан с выявлением ее осн. элементов, их взаимосвязи, алгоритмов их работы и с возможностью синтезировать из этих элементов системы управления. Одной из центральных проблем К. является вопрос о структуре самоорганизующихся (самонастраивающихся) систем. Т. наз. сложные системы из иерархий взаимодействующих подсистем, обладающие способностью к устойчивому сохранению или достижению нек-рых состояний (или характеристик своих состояний) в условиях воздействия внешних факторов, нарушающих эти состояния или мешающих их достижению. Наиболее совершенные из самоорганизующихся систем сформированы эволюционным процессом в живой природе. Поэтому К. использует аналогию между функциями управления в живых организмах и технических устройствах. Значение К. в настоящее время обнаруживается прежде всего в свете тех возможностей, к-рые она открывает для автоматизации производства и всех видов формализуемого умственного труда человека, для исследования методом моделирования биологических систем управления и регуляции (гормональных, нервных, механизма наследственности), для создания нового типа медицинской и др. аппаратуры. Перспективно также применение метода К. к исследованию экономики и др. областей организованной человеческой деятельности. Такая широта охвата методами К. объектов самой различной природы не является результатом субъективистского произвола, а имеет под собой объективное основание в наличии нек-рой общности функций и структур у живых организмов и искусственных устройств, поддающихся математическому описанию и исследованию. Будучи в этом смысле синтетической дисциплиной, К. являет собой пример нового типа взаимодействия наук и дает материал для философских обобщений в области учения о формах движения материи, теории отражения и классификации наук. Развитие К. вызвало обсуждение целого ряда общих методологических проблем — о соотношении мышления человека и действий кибернетических машин, о. природе информации и связи ее с физическим понятием энтропии, о сущности того, что называют организованным, целесообразным, живым и др., — носящих философский характер. На основании ложных идеологических интерпретаций К. первоначально отвергалась в нашей стране, философски клеймилась как лженаука, что нанесло большой урон ее развитию.
Философский энциклопедический словарь
КИБЕРНЕТИКА (от греч. kybernetike [techne] – искусство управления) – наука о самоуправляющихся машинах, в частности о машинах с электронным управлением («электронный мозг»). Кибернетика получила самое широкое распространение в последней трети 20 в. и сейчас находит широкое применение также в биологии и социологии. «Отец кибернетики» амер. ученый Норберт Винер в труде «Кибернетика, или Управление и связь в животном и машине» (1948) показал, что человеческий мозг действует наподобие электронных вычислительных машин с двоичной системой исчисления.
Бренан - Словарь научной грамотности
Одно из направлений роботизации. Название происходит от греческого слова "рулевой". В современном значении термин введен Норбертом Винером (Wiener, 1894-1964) - математиком из Массачусетсского технологического института (США) - с целью изучения фундаментальных математических зависимостей, управляющих системами с обратной связью. Теория автоматического компьютерного управления основана на получении информации на выходе какой-то системы и последующем возвращении этих данных на ее вход, чтобы управлять всей системой без вмешательства человека. Эту область техники теперь принято называть технологией управления с обратной связью. Простой пример прибора с обратной связью - термостат-кондиционер, который управляет температурой в помещении. Более сложный пример - автоматическая система регулирования тормозов в новых типах автомобилей, у которых торможение каждого колеса контролируется специальными датчиками, связанными с компьютерным центральным устройством, препятствующим неверным действиям водителя и предотвращающим заклинивание тормозов. См. <<обратная связь, управление>>; <<роботы и роботизация>>.
Научнотехнический Энциклопедический Словарь
КИБЕРНЕТИКА, дисциплина, посвященная изучению систем управления и коммуникации у животных, в организациях и механизмах. Термин был впервые применен в этом смысле в 1948 г. Норбертом Винером. Кибернетика проводит аналогии между процессами, происходящими в мозгу и нервной системе, и в компьютерах и других электронных системах и анализирует, например, механизмы ОБРАТНОЙ СВЯЗИ и обработки данных в одних и других системах. Таким образом, бытовой термостат можно сравнить с системой регулирования дыхания и температуры тела. Кибернетика использует методы математики, нейрофизиологии, компьютерной технологии, ТЕОРИИ ИНФОРМАЦИИ и психологии.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: КИБЕРНЕТИКА


будет выглядеть так: Что такое КИБЕРНЕТИКА