Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

ГИДРОЭНЕРГЕТИКА

Большая советская энциклопедия (БЭС)
        раздел энергетики, связанный с использованием потенциальной энергии водных ресурсов.
         Человек ещё в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии научились строить водяные колёса, которые вращала вода; этими колёсами приводились в движение мельничные постава и др. установки. Водяная мельница является примером древнейшей гидроэнергетические установки, сохранившейся во многих местах до нашего времени почти в первобытном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колёс увеличивалась мощность гидравлических установок, приводящих в движение станки, молоты, воздуходувные устройства и т. п. Об использовании водной энергии на территории СССР свидетельствуют материалы археологических исследований, в частности проведённых на территории Армении и в бассейне р. Амударья. В 17 в. в России единственной энергетической базой развивавшегося мануфактурного производства были водяные колёса. Замечательные успехи в строительстве вододействующих или гидросиловых установок в России были достигнуты в 18 в. в горнорудной промышленности на Урале и Алтае. Гидросиловые установки были неотъемлемой частью металлургического, лесопильного, бумажного, ткацкого и др. производств. К концу 18 в. в России было уже около 3000 мануфактур, использовавших водную энергию рек. Были созданы уникальные для того времени гидросиловые установки. Например, в 1765 водный мастер К. Д. Фролов соорудил на р. Корбалиха (Алтай) гидросиловую установку, в которой вода подводилась к рабочему колесу по специальному каналу. Образовавшийся перепад между каналом и рекой использовался в установке для вращения водяного колеса, которое при помощи системы остроумно осуществленных передач приводило в движение группу машин, в том числе предложенный К. Д. Фроловым внутризаводской транспорт в виде системы вагонеток. В 1787 К. Д. Фролов завершил строительство деривационной четырехступенчатой подземной гидросиловой установки на р. Змеевка, не имевшей себе равных как по схеме, так и по масштабу и уровню технического исполнения. Самые мощные водяные колёса диаметром 9,5 м, шир. 7,5 м были установлены в конце 18 в. в России на р. Нарова для Кренгольмской мануфактуры. При напоре 5 м они развивали мощность до 500 л. с. С появлением паровой машины примитивные вододействующие установки начали утрачивать своё значение. Для того чтобы конкурировать с паровой машиной, необходимо было иметь более совершенные двигатели, чем громоздкие и сравнительно маломощные водяные колёса. В 1-й половине 19 в. была изобретена Гидротурбина, открывшая новые возможности перед Г. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния Г. приобрела новое значение уже как направление электроэнергетики; началось освоение водной энергии путём преобразования её в электрическую на гидроэлектрических станциях (См. Гидроэлектрическая станция) (ГЭС).
         В царской России к 1913 насчитывалось около 50 тыс. гидросиловых установок общей мощностью почти 1 млн. л. с.; из них около 17 тыс. были оборудованы гидротурбинами. Суммарная годовая выработка электроэнергии на всех ГЭС не превышала 35 млн. квт /ч при установленной мощности около 16 Мвт.
         О крайней отсталости царской России в развитии Г. свидетельствует тот факт, что в 1913 в др. странах общая мощность действующих ГЭС достигла 12000 Мвт, причём были построены такие крупные электростанции, как, например, ГЭС Адамс на Ниагарском водопаде (США) мощностью 37 Мвт. Только после Великой Октябрьской социалистической революции началось широкое освоение гидроэнергетических ресурсов страны. 13 июня 1918 СНК принял решение о строительстве Волховской ГЭС мощностью 58 Мвт — первенца советской Г. В 1920 по указанию и при непосредственном участии В. И. Ленина был составлен план электрификации России — план ГОЭЛРО. В нём предусматривалось сооружение 10 ГЭС общей установленной мощностью 640 Мвт. В 1927 начато строительство самой крупной для того времени гидростанции в Европе— Днепровской ГЭС мощностью 560 Мвт; с её пуском в 1932 СССР в строительстве гидростанций достиг уровня наиболее развитых стран мира. За 1917—70 Советский Союз стал одной из ведущих стран в области Г.: по установленной мощности гидроэлектростанций в 1970 СССР уступал только США. По запасам же гидроэнергии Советский Союз значительно превосходит все страны мира. Гидроэнергетический потенциал крупных и средних рек в СССР равен 3338 млрд.
        квт ·ч, в том числе на реках Европейской территории Союза и Кавказа — 588 млрд. квт ·ч (или 17,6%) и на территории Азиатского материка — 2750 млрд. квт ·ч (или 82,4%).
         Экономический потенциал гидроэнергетических ресурсов СССР определён (1965) в размере 1095 млрд. квт ·ч среднегодовой выработки (см. табл. 1).
         Табл. 1. — Степень освоения гидроэнергетических ресурсов в различных странах мира
        ------------------------------------------------------------------------------------------------------------------------------------------------------
        |                             | Экономический    |                             | Выработка           | Степень                |
        |                             | потенциал            |                             | электроэнергии    | использования      |
        | Страна                 | гидроэнерго-        | Год оценки           | на ГЭС,                | экономического     |
        |                             | ресурсов, млрд.   |                             | млрд. квт ·ч         | потенциала           |
        |                             | квт ·ч                   |                             | в 1969                  | гидроэнер-            |
        |                             |                             |                             |                             | горесурсов, %       |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | СССР                   | 1095                     | 1965                     | 115,2                    | 10,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | США                    | 685                      | 1966                     | 253,3                    | 37,0                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Канада                 | 218                      | 1965                     | 151,0                    | 69,3                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Япония                 | 132                      | 1967                     | 79,8                     | 60,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Норвегия              | 152                      | 1967                     | 57,5                     | 37,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Франция               | 70                        | 1967                     | 52,9                     | 75,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Швеция                | 80                        | 1966                     | 41,8                     | 52,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Италия                 | 70                        | 1966                     | 41,7                     | 59,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Швейцария           | 32                        | 1967                     | 27,3                     | 85,5                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Испания               | 58                        | 1967                     | 30,7                     | 53,0                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Бразилия             | 657                      | 1966                     | 32,0                     | 4,9                        |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Мексика               | 73                        | 1967                     | 12,6                     | 17,3                      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Австрия               | 38                        | 1966                     | 16,7                     | 44,0                      |
        ------------------------------------------------------------------------------------------------------------------------------------------------------
        
         Табл. 2. — Место гидроэнергетики в электроэнергетике СССР
        ------------------------------------------------------------------------------------------------------------------------------------------------------------------------
        |                                                   | 1913      | 1926   | 1930      | 1940   | 1950      | 1960      | 1965      | 1970      |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | Мощность ГЭС, Мвт                   | 16         | 89       | 128        | 1587   | 3218      | 14781    | 22244    | 31300     |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | Доля ГЭС в общей мощности      | 1,4        | 5,6      | 4,5        | 14,2    | 16,4       | 22,2       | 19,3       | 18,9       |
        | электростанций страны, %          |              |           |              |           |              |              |              |              |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | Выработка электроэнергии на     | 0,035     | 0,05    | 0,585     | 5,11    | 12,69     | 50,9       | 81,4       | 123,3     |
        | ГЭС, млрд. квт-ч                         |              |           |              |           |              |              |              |              |
        |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | Доля ГЭС в выработке                | 1,8        | 1,4      | 6,6        | 10,4    | 13,9       | 17,4       | 16,1       | 16,6       |
        | электроэнергии в стране, %        |              |           |              |           |              |              |              |              |
        ------------------------------------------------------------------------------------------------------------------------------------------------------------------------
        
         Народнохозяйственное значение гидроэнергоресурсов огромно: на протяжении многих лет ГЭС являлись единственно возможным источником электроэнергии для многих районов страны. И в 70-х гг. с выявлением огромных запасов топливных ресурсов и созданием объединённых энергетических систем значение Г. не утрачено. Во многих энергосистемах ГЭС составляют основу энергетики и несут почти всю основную нагрузку. Так, например, в Кольской энергосистеме число часов использования мощности ГЭС составляет свыше 5000, а ТЭС — менее 2000 в год. В объединённой энергосистеме Центральной Сибири число часов использования мощности ГЭС и тепловых электростанций почти одинаково (4200 и 4600 в год). В единой энергосистеме Европейской части страны число часов использования мощности ГЭС около 3000.
         Важной экономической особенностью гидроэнергетических ресурсов является их вечная возобновляемость, не требующая в дальнейшем дополнительных капиталовложений. Электроэнергия, вырабатываемая на ГЭС, в среднем почти в 4 раза дешевле электроэнергии, получаемой от тепловых электростанций. Поэтому использованию гидроэнергетических ресурсов придаётся особое значение при размещении электроёмких производств. Отсутствие необходимости в топливе и более простая технология выработки электроэнергии приводят к тому, что затраты труда на единицу мощности на ГЭС почти в 10 раз меньше, чем на тепловых электростанциях (с учётом добычи топлива и его транспортирования). Высокая производительность труда на ГЭС является одной из основных её экономических особенностей и имеет важнейшее значение при решении задач энергетического строительства в малообжитых и особенно в удалённых районах Севера страны.
         ГЭС являются мобильными энергетическими установками, выгодно отличающимися от паротурбинных тепловых электростанций (См. Тепловая электростанция) в области регулирования частоты, покрытия растущих пиковых нагрузок, маневрирования мощностью в период ночного снижения нагрузок и в роли аварийного резерва системы. Это особенно важно для энергосистем Европейской части СССР, где электропотребление в течение суток характеризуется большой неравномерностью.
         Огромные гидроэнергетические ресурсы сосредоточены в Восточной Сибири, на рр. Енисей, Ангара, Нижняя Тунгуска и др. Природные условия позволяют получать здесь в больших количествах особенно дешёвую электроэнергию на гигантских ГЭС, мощностью 4000—6000 Мвт каждая. На базе этой дешёвой электроэнергии развивается электроёмкая промышленность. Г. содействовала развитию производительных сил северных районов Восточной Сибири. На долю Г. приходится примерно 19% от мощности всех электростанций и около 16% от выработки электроэнергии в целом по стране (см. табл. 2).
         Г. на всех этапах экономического развития СССР имела большое значение в снабжении электроэнергией развивающейся промышленности. В ряде районов страны Г. была основной энергетической базой для развития экономики (Мурманская обл., Карелия, Закавказье, некоторые районы Средней Азии и др.). Г. во многих случаях была ведущей в комплексном использовании водных ресурсов. Крупное гидротехническое строительство явилось по существу первым звеном в реализации больших ирригационных проблем. Построенные и строящиеся ГЭС создали предпосылки для расширения системы орошения на огромных площадях.
         Гидроэнергетическое строительство на рр. Волга, Кама, Дон, Днепр и Свирь обусловило их превращение в водные магистрали Европейской части страны, позволило поднять уровень воды на этих реках и создать единую судоходную систему, соединяющую Каспийское, Чёрное, Азовское, Балтийское и Белое моря.
         В СССР построены и строятся (1970) крупнейшие ГЭС в мире: Саяно-Шушенская и Красноярская на р. Енисей, Братская им. 50-летия Великого Октября и Усть-Илимская на р. Ангара, Нурекская на р. Вахш, Волжская им. 22-го съезда КПСС, Волжская им. В. И. Ленина.
         Огромные масштабы гидротехнического строительства в СССР стали возможны благодаря высокому уровню развития гидротехнической науки, проектирования и строительства. Всё, что было построено и спроектировано в области Г. и гидротехники, осуществлено своими силами, без привлечения иностранных фирм. Сов. Союз впервые в мире начал строить крупные гидроузлы на мягких основаниях. В СССР были построены плотины новых типов, чрезвычайно высокие, а в отдельных случаях — рекордные по высоте в мировой практике: арочные — Ингурская (высота 271 м), Чиркейская (230 м); арочно-гравитационные — Саянская (236 м), Токтогульская (215 м); гравийно-галечниковая — Нурекская (310 м); плотины в районах вечной мерзлоты — Мамаканская, Вилюйская и Хантайская. В 70-х гг. продолжалось строительство крупных гидроузлов с высокими плотинами в высокосейсмичных районах (Токтогульский в зоне свыше 9 баллов и ряд др.). Много нового внесено в проектирование плотин на равнинных реках.
         Освоены новые типы гидротурбинного оборудования: на Братской ГЭС им. 50-летия Великого Октября установлены гидроагрегаты по 225 Мвт; на Красноярской — по 508 Мвт. Освоены капсульные горизонтальные гидроагрегаты на Киевской, Каневской и др. ГЭС. В СССР построена (1968) первая Приливная электростанция (Кислогубская ПЭС). Сов. опыт гидротехнического строительства находится на уровне мировых достижений.
         Лит.: План электрификации РСФСР. Доклад VIII съезду Советов Государственной комиссии по электрификации России, 2 изд., М., 1955; Золотарев Т. Д., Гидроэнергетика, М. — Л., 1955; Нестерук Ф. Я., Развитие гидроэнергетики СССР, М., 1963; Энергетические ресурсы СССР, [т. 2] — Гидроэнергетические ресурсы, М., 1967; Электрификация СССР, под ред. П. С. Непорожнего, М., 1970.
         И. А. Терман.
Мультимедийная энциклопедия
использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды. До середины 19 в. для этого применялись водяные колеса, преобразующие энергию движущейся воды в механическую энергию вращающегося вала. Позднее появились более быстроходные и эффективные гидравлические турбины. До конца 19 в. энергия вращающегося вала использовалась непосредственно, например для размола зерна или для приведения в действие кузнечных мехов и молота. В наши дни практически вся механическая энергия, создаваемая гидравлическими турбинами, преобразуется в электроэнергию. См. также <<ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ>>. Почти вся гидравлическая энергия представляет собой одну из форм солнечной энергии и поэтому относится к возобновляемым природным энергоресурсам. Под лучами солнца испаряется вода из озер, рек и морей. Образуются облака, идет дождь, и вода в конце концов возвращается в водные бассейны, т.е. туда, откуда испарилась. С таким круговоротом воды в природе связаны колоссальные количества энергии. Географическая область умеренного климата высотой над уровнем моря около 2500 м и количеством осадков порядка 1000 мм/год теоретически могла бы непрерывно давать более 750 кВт с каждого квадратного километра площади. На самом деле можно использовать лишь малую долю всего количества осадков и лишь ничтожную долю высоты, с которой они стекают. Кроме того, обычно КПД современных гидротурбин и генераторов не превышает 86%. Тем не менее производительность гидроэлектростанций (ГЭС) в США составляет около 75 000 МВт, и по крайней мере еще 50 000 МВт можно получить дополнительно. См. также <<ДОЖДЬ>>. Гидроэнергетические ресурсы. Уровень развития гидроэнергетики в разных странах и на разных континентах неодинаков. Больше всего гидроэлектроэнергии производят Соединенные Штаты, за ними идут Россия, Украина, Канада, Япония, Бразилия, КНР и Норвегия. Неосвоенные гидроэнергетические ресурсы Африки, Азии и Южной Америки открывают широкие возможности строительства новых ГЭС. На Северную Америку, в распоряжении которой находится всего около 13% мировых ресурсов гидроэнергетики, приходится около 35% полной мощности действующих ГЭС. В то же время Африка (21% мировых гидроэнергетических ресурсов) и Азия (39%) вносят лишь 5 и 18% соответственно в мировую выработку гидроэлектроэнергии. Из остальных континентов Европа (21% ресурсов) дает 31% выработки, а Южная Америка и Австралия, вместе взятые, располагая примерно 15% ресурсов, дают только 11% производимой в мире гидроэлектроэнергии. водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям. Плотины. Вода, вращающая гидравлические турбины, обычно берется из искусственных водохранилищ, созданных путем перекрытия реки плотиной. Плотина повышает напор воды, поступающей на турбины, и тем самым увеличивает мощность электростанции. Расход воды из водохранилища через турбины можно регулировать. Водохранилище, кроме того, служит отстойником для песка, ила и мусора, приносимых естественными водотоками. Построив плотину с водохранилищем, можно предотвратить паводковые затопления, а также создать надежный запас воды для водоснабжения населения и промышленности. См. также <<ПЛОТИНА>>. Гидравлические турбины. Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. (Паровые и газовые турбины - со многими венцами лопаток.) К лопастям первого венца относятся профилированные колонны статора и лопатки направляющего аппарата, причем последние обычно позволяют регулировать расход воды через турбину. Второй венец образуют лопасти рабочего колеса турбины. Два последовательных лопастных венца (статора и колеса) составляют ступень турбины. Таким образом, в гидротурбинах имеется только одна ступень. См. также <<ТУРБИНА>>. Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. В гидроагрегатах приливной ГЭС, построенной в заливе Фанди (провинция Новая Шотландия, Канада), ротор генератора закреплен на периферии рабочего колеса, охватывая его. Такая конструкция генератора требует меньше железа и меди. Но чаще турбину располагают вертикально и выводят ее вал из пологого S-образного водяного канала через уплотнение к внешнему гидрогенератору. Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Расчетный диапазон напора для горизонтальных осевых турбин составляет 3-15 м. Вертикальные осевые турбины используются при напорах от 5 до 30 м. Конструкцию поворотно-лопастных турбин предложил в 1910 австрийский инженер В.Каплан. Лопатки их направляющего аппарата поворачиваются на осях, параллельных валу, и турбина снабжена подводящей камерой, к которой подходит водовод. Напор воды преобразуется в механическую энергию вращающегося вала, а затем в электроэнергию. 1 - верхняя платформа; 2 - верхняя ферма статора; 3 - статор генератора; 4 - коллектор водяного охлаждения обмоток статора; 5 - ротор; 6 - обод ротора; 7 - полюсы с обмоткой возбуждения; 8 - контактные кольца; 9 - подпятник с направляющим подшипником; 10 - нижняя ферма статора; 11 - домкраты ротора; 12 - тормоза; 13 - воздухоохладители; 14 - вал и муфта; 15 - направляющий подшипник; 16 - корпус подшипника; 17 - исполнительный механизм затвора; 18 - нижняя платформа; 19 - рабочее колесо; 20 - лопатки направляющего аппарата; 21 - колонны статора турбины; 22 - спиральная камера турбины; 23 - отводная камера; 24 - отводная труба. При повышенных напорах (от 12 до 300 м) более предпочтительны радиально- осевые турбины, в которых вода, входя по радиусу, выходит в осевом направлении. Такие турбины существенно усовершенствовал американский инженер Дж.Френсис, начавший эксперименты с ними в каналах под Лоуэллом (шт. Массачусетс, США) в 1851. Радиально-осевые турбины обычно отличаются лопатками большого диаметра, жестко закрепленными на рабочем колесе, но направляющий аппарат в них такого же вида, как и в поворотно-лопастных турбинах. Турбины для напоров, превышающих 300 м, совершенно иные, нежели описанные выше. В них имеются от одного до шести сопел кругового сечения, создающих водяные струи, которые падают на лопасти рабочего колеса. Расход воды регулируется перекрытием проходного сечения сопел. Рабочее колесо работает не под водой, как в осевой и радиально-осевой турбинах, а в воздухе. Высокоскоростная свободная водяная струя бьет в лопасть рабочего колеса, которая имеет форму двойного ковша. Конструкция ковшовой гидротурбины была предложена в 1878 и запатентована в 1880 американским инженером А.Пелтоном. Ковшовая гидротурбина называется активной (свободноструйной), поскольку в соплах напор падает до нуля и сила, действующая на лопасти, создается ударом струи. Осевая же и радиально-осевая турбины относятся к реактивным (напороструйным), так как поток продолжает ускоряться в проходах между лопастями рабочего колеса и крутящий момент частично создается реакцией, ответственной за ускорение. Гидрогенераторы. Гидрогенераторы для ГЭС специально проектируются соответственно частоте вращения и мощностью гидротурбин, для которых они предназначаются. Гидрогенераторы на большую единичную мощность обычно устанавливают вертикально на подпятниках с соответствующими направляющими подшипниками. Они, как правило, трехфазные и рассчитаны на стандартную частоту. Система воздушного охлаждения - замкнутая, с теплообменниками воздух - вода. Предусматривается возбудитель. См. также <<ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ>>. Коэффициент нагрузки. Немногие ГЭС все время работают на полной мощности. Иногда это невозможно из-за нехватки воды, а иногда лишено смысла из-за отсутствия нагрузки. Коэффициент нагрузки электростанции - это отношение средней потребляемой мощности за данный период к пиковой мощности в этот же период. При использовании накопительного водохранилища, в котором вода аккумулируется в часы пониженных нагрузок, ГЭС на водотоке, который годен для выработки лишь 10 МВт, может обслуживать нагрузку в 15- 20 МВт, если коэффициент нагрузки лежит в пределах от 0,50 до 0,67. Это относится к отдельной ГЭС, самостоятельно обслуживающей свою нагрузку. Если же она включена в энергетическую систему, в которую входят и другие электростанции, то может быть переведена в режим с пиковой мощностью, значительно превышающей 20 МВт, но при меньшем коэффициенте нагрузки. (Испания). В энергетические системы, как правило, входят не только ГЭС. Если в системе имеются и тепловые электростанции (ТЭС), то ГЭС может работать по своему графику нагрузки, отличному от общего. От нее требуется, чтобы она приносила наибольшую пользу всей системе. Для этого ГЭС может, например, работать на максимально возможной мощности при имеющемся запасе воды, чтобы экономилось топливо, или же работать только в часы пиковой нагрузки системы, чтобы снизить требуемую мощность ТЭС и, следовательно, необходимые инвестиции на их сооружение и эксплуатацию. Гидроаккумулирующие электростанции (ГАЭС). В часы малых нагрузок гидроагрегаты ГАЭС перекачивают воду из низового водоема в верховой, а в часы повышенных - используют запасенную воду для выработки пиковой энергии. Работа в турбинном и насосном режимах обеспечивается обратимыми гидроагрегатами, состоящими из синхронной электрической машины и гидравлической насос-турбины. На перекачку воды в верхний водоем из нижнего затрачивается иногда в полтора раза больше электроэнергии, чем затем из нее вырабатывается. Но это оправдано с точки зрения экономики энергетической системы. Дело в том, что энергию, затрачиваемую на перекачку, вырабатывают ТЭС энергетической системы в часы пониженной нагрузки, когда ее стоимость понижается. Таким образом дешевая "ночная" электроэнергия превращается в ценную "пиковую", что повышает экономическую эффективность системы в целом. Преимущества ГАЭС состоят в том, что у них может быть повышенный напор, для них проще выбрать место сооружения и они требуют меньше воды (поскольку вода циркулирует между верхним и нижним водоемами). Благодаря повышенному напору можно использовать более крупные и эффективные гидрогенераторы. Но существуют и ГЭС смешанного типа (ГЭС - ГАЭС), на которых часть гидроагрегатов работает как в турбинном, так и в насосном режиме, а остальные - только в турбинном (за счет приточности к верхнему водоему). Такие электростанции часто позволяют накапливать больше воды и, следовательно, вырабатывать больше электроэнергии в более длительные периоды пиковой нагрузки, обеспечивая повышенную гибкость в работе. Приливные электростанции (ПЭС). Для создания экономичной приливной электростанции необходимо сочетание необычайно большого перепада уровней при приливе и отливе (6 м и более) с особенностями береговой линии, позволяющими создать плотину и водный бассейн соответствующих размеров. На Земле не так много мест, где выполняются эти условия: побережья штата Мэн (США) и провинции Нью-Брансуик (Канада), некоторые заливы Желтого моря, Персидский залив, Аляска, некоторые места Аргентины, юг Англии, север Франции, север европейской России и ряд заливов Австралии. Но даже в таких подходящих местах, как залив Пассамакуодди на границе штата Мэн и провинции Нью-Брансуик, ПЭС в настоящее время вряд ли могли бы по стоимости вырабатываемой электроэнергии конкурировать с современными ТЭС. В проектах ПЭС обычно предусматривается создание двух бассейнов - верхового и низового - с водопропускными отверстиями и затворами. Верховой бассейн наполняется во время прилива, а затем опорожняется в низовой, опорожнившийся при отливе. См. также <<ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ>>. ЛИТЕРАТУРА Непорожний П.С., Обрезков В.И. Введение в специальность: гидроэлектроэнергетика. М., 1982 Малинин Н.К. Теоретические основы гидроэнергетики. М., 1985 Аршеневский Н.Н. и др. Гидроэлектрические станции. М., 1987
Орфографический словарь Лопатина
гидроэнерг`етика, гидроэнерг`етика, -и
Толковый словарь Ефремовой
[гидроэнергетика]
ж.
Отрасль энергетики, связанная с использованием потенциальной энергии водных ресурсов.
Бренан - Словарь научной грамотности
Получение электрической энергии путем преобразования энергии падающей воды. Вода, накопленная в резервуаре позади плотины, может использоваться для вращения турбин, соединенных с электрическим генератором. Полученная энергия передается по высоковольтным линиям электропередачи в те места, где она нужна. В США в настоящее время около пятой части всего потребляемого электричества - примерно 60 тыс. мегаватт - поступает от гидроэнергетических источников. Теоретически можно увеличить это количество в четыре или пять раз, но для этого потребуется строительство большого числа плотин, каждая из которых окажет нежелательное воздействие на местную экологию, что вызывает беспокойство населения. См. <<энергии источники>>; <<энергии использование>>.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: ГИДРОЭНЕРГЕТИКА


будет выглядеть так: Что такое ГИДРОЭНЕРГЕТИКА