Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

ГЕОМЕТРИЯ

Большая советская энциклопедия (БЭС)
(греч. geometria, от ge — Земля и metreo — мерю)
        раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре.
         Происхождение термина «Г.", что буквально означает «землемерие», можно объяснить следующими словами, приписываемыми древнегреческому учёному Евдему Родосскому (4 в. до н. э.): «Геометрия была открыта египтянами и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития р. Нил, постоянно смывавшего границы». Уже у древних греков Г. означала математическую науку, в то время как для науки об измерении Земли был введён термин Геодезия. Судя по сохранившимся отрывкам древнеегипетских сочинений, Г. развилась не только из измерений Земли, но также из измерений объёмов и поверхностей при земляных и строительных работах и т.п.
         Первоначальные понятия Г. возникли в результате отвлечения от всяких свойств и отношений тел, кроме взаимного расположения и величины. Первые выражаются в прикосновении или прилегании тел друг к другу, в том, что одно тело есть часть другого, в расположении «между», «внутри» и т.п. Вторые выражаются в понятиях «больше», «меньше», в понятии о равенстве тел.
         Путём такого же отвлечения возникает понятие геометрического тела. Геометрическое тело есть абстракция, в которой сохраняются лишь форма и размеры в полном отвлечении от всех других свойств. При этом Г., как свойственно математике вообще, совершенно отвлекается от неопределённости и подвижности реальных форм и размеров и считает все исследуемые ею отношения и формы абсолютно точными и определёнными. Отвлечение от протяжения тел приводит к понятиям поверхности, линии и точки. Это явно выражено, например, в определениях, данных Евклидом: «линия есть длина без ширины», «поверхность есть то, что имеет длину и ширину». Точка без всякого протяжения есть абстракция, отражающая возможность неограниченного уменьшения всех размеров тела, воображаемый предел его бесконечного деления. Дальше возникает общее понятие о геометрической фигуре, под которой понимают не только тело, поверхность, линию или точку, но и любую их совокупность.
         Г. в первоначальном значении есть наука о фигурах, взаимном расположении и размерах их частей, а также о преобразованиях фигур. Это определение вполне согласуется с определением Г. как науки о пространственных формах и отношениях. Действительно, фигура, как она рассматривается в Г., и есть пространственная форма; поэтому в Г. говорят, например, «шар», а не «тело шарообразной формы»; расположение и размеры определяются пространственными отношениями; наконец, преобразование, как его понимают в Г., также есть некоторое отношение между двумя фигурами — данной и той, в которую она преобразуется.
         В современном, более общем смысле, Г. объемлет разнообразные математические теории, принадлежность которых к Г. определяется не только сходством (хотя порой и весьма отдалённым) их предмета с обычными пространственными формами и отношениями, но также тем, что они исторически сложились и складываются на основе Г. в первоначальном её значении и в своих построениях исходят из анализа, обобщения и видоизменения её понятий. Г. в этом общем смысле тесно переплетается с другими разделами математики и её границы не являются точными. См. разделы Обобщение предмета геометрии и Современная геометрия.
         Развитие геометрии. В развитии Г. можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Г.
         Первый — период зарождения Г. как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Г., дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Г., по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.
         Этот процесс привёл, наконец, к качественному скачку. Г. превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались. С этого времени начинается второй период развития Г. Известны упоминания систематические изложения Г., среди которых данное в 5 в. до н. э. Гиппократом Хиосским (См. Гиппократ Хиосский). Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. «Начала» Евклида (См. Начала Евклида). Здесь Г. представлена так, как её в основном понимают и теперь, если ограничиваться элементарной геометрией (См. Элементарная геометрия); это наука о простейших пространственных формах и отношениях, развиваемая в логической последовательности, исходя из явно формулированных основных положений — аксиом и основных пространственных представлений. Г., развиваемую на тех же основаниях (аксиомах), даже уточнённую и обогащенную как в предмете, так и в методах исследования, называется евклидовой геометрией (См. Евклидова геометрия). Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в. до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и Г. на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии Г., однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.
         Возрождение наук и искусств в Европе повлекло дальнейший расцвет Г. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в Г. метод координат. Метод координат позволил связать Г. с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в Г. породило аналитическую Г., а потом и дифференциальную. Г. перешла на качественно новую ступень по сравнению с Г. древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы. С этого времени начинается третий период развития Г. Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, Г. Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования (понятию «дифференциальная Г.» придаётся теперь часто более общий смысл, о чём см. в разделе Современная геометрия). Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии (См. Проективная геометрия) в работах Ж. Дезарга и Б. Паскаля (См. Паскаль). Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений Г. были даны в 18 — начале 19 вв. Эйлером для аналитической Г. (1748), Монжем для дифференциальной Г. (1795), Ж. Понселе для проективной Г. (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии (См. Начертательная геометрия). Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) Г. оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.
         Четвёртый период в развитии Г. открывается построением Н. И. Лобачевским (См. Лобачевский) в 1826 новой, неевклидовой Г., называемой теперь Лобачевского геометрией (См. Лобачевского геометрия). Независимо от Лобачевского в 1832 ту же Г. построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Источник, сущность и значение идей Лобачевского сводятся к следующему. В геометрии Евклида имеется аксиома о параллельных, утверждающая: «через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной». Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: «через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые». Это и есть аксиома Лобачевского. По мысли Лобачевского, присоединение этого положения к другим основным положениям Г. приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову Г. Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую Г., логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям. Лобачевский рассматривал свою Г. как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование (см. раздел Истолкования геометрии).
         Переворот в Г., произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван «Коперником геометрии». В его идеях были намечены три принципа, определившие новое развитие Г. Первый принцип заключается в том, что логически мыслима не одна евклидова Г., но и другие «геометрии». Второй принцип — это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой Г. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой Г. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой Г., т.к. она определяется логической состоятельностью (непротиворечивостью) этой Г. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая — в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики. Перечисленные общие принципы сыграли важную роль не только в Г., но и в математике вообще, в развитии её аксиоматического метода, в понимании её отношения к действительности.
         Главная особенность нового периода в истории Г., начатого Лобачевским, состоит в развитии новых геометрических теорий — новых «геометрий» и в соответствующем обобщении предмета Г.; возникает понятие о разного рода «пространствах» (термин «пространство» имеет в науке два смысла: с одной стороны, это обычное реальное пространство, с другой — абстрактное «математическое пространство»). При этом одни теории складывались внутри евклидовой Г. в виде её особых глав и лишь потом получали самостоятельное значение. Так складывались проективная, аффинная, конформная Г. и др., предметом которых служат свойства фигур, сохраняющиеся при соответствующих (проективных, аффинных, конформных и др.) преобразованиях. Возникло понятие проективного, аффинного и конформного пространств; сама евклидова Г. стала рассматриваться в известном смысле как глава проективной Г. Др. теории, подобно геометрии Лобачевского, с самого начала строились на основе изменения и обобщения понятий евклидовой Г. Так, создавалась, например, многомерная Г.; первые относящиеся к ней работы (Г. Грасман и А. Кэли, 1844) представляли формальное обобщение обычной аналитической Г. с трёх координат на n. Некоторый итог развития всех этих новых «геометрий» подвёл в 1872 Ф. Клейн, указав общий принцип их построения.
         Принципиальный шаг был сделан Б. Риманом (лекция 1854, опубликована 1867). Во-первых, он ясно формулировал обобщённое понятие пространства как непрерывной совокупности любых однородных объектов или явлений (см. раздел Обобщение предмета геометрии). Во-вторых, он ввёл понятие пространства с любым законом измерения расстояний бесконечно малыми шагами (подобно измерению длины линии очень малым масштабом). Отсюда развилась обширная область Г., т. н. Риманова геометрия и её обобщения, нашедшая важные приложения в теории относительности, в механике и др.
         В тот же период зародилась Топология как учение о тех свойствах фигур, которые зависят лишь от взаимного прикосновения их частей и которые тем самым сохраняются при любых преобразованиях, не нарушающих и не вводящих новых прикосновений, т. е. происходящих без разрывов и склеиваний. В 20 в. топология развилась в самостоятельную дисциплину.
         Так Г. превратилась в разветвленную и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т.д.) и фигуры в этих пространствах.
         Одновременно с развитием новых геометрических теорий велась разработка уже сложившихся областей евклидовой Г. — элементарной, аналитической и дифференциальной Г. Вместе с тем в евклидовой Г. появились новые направления. Предмет Г. расширился и в том смысле, что расширился круг исследуемых фигур, круг изучаемых их свойств, расширилось само понятие о фигуре. На стыке анализа и Г. возникла в 70-х гг. 19 в. общая теория точечных множеств, которая, однако, уже не причисляется к Г., а составляет особую дисциплину (см. Множеств теория). Фигура стала определяться в Г. как множество точек. Развитие Г. было тесно связано с глубоким анализом тех свойств пространства, которые лежат в основе евклидовой Г. Иными словами, оно было связано с уточнением оснований самой евклидовой Г. Эта работа привела в конце 19 в. (Д. Гильберт и др.) к точной формулировке аксиом евклидовой Г., а также других «геометрий».
         Обобщение предмета геометрии. Возможность обобщения и видоизменения геометрических понятий легче всего уяснить на примере. Так, на поверхности шара можно соединять точки кратчайшими линиями — дугами больших кругов, можно измерять углы и площади, строить раз личные фигуры. Их изучение составляет предмет Г. на сфере, подобно тому, как планиметрия есть Г. на плоскости; Г. на земной поверхности близка к Г. на сфере. Законы Г. на сфере отличны от законов планиметрии; так, например, длина окружности здесь не пропорциональна радиусу, а растет медленнее и достигает максимума для экватора; сумма углов треугольника на сфере непостоянна и всегда больше двух прямых. Аналогично можно на любой поверхности проводить линии, измерять их длины, углы между ними, определять ограниченные ими площади. Развиваемая так Г. на поверхности называется её внутренней Г. (К. Гаусс, 1827). На неравномерно изогнутой поверхности соотношения длин и углов будут различными в разных местах, следовательно, она будет геометрически неоднородной, в отличие от плоскости и сферы. Возможность получения разных геометрических соотношений наводит на мысль, что свойства реального пространства могут лишь приближённо описываться обычной Г. Эта идея, впервые высказанная Лобачевским, нашла подтверждение в общей теории относительности.
         Более широкая возможность обобщения понятий Г. выясняется из следующего рассуждения. Обычное реальное пространство понимают в Г. как непрерывную совокупность точек, т. е. всех возможных предельно точно определённых местоположений предельно малого тела. Аналогично непрерывную совокупность возможных состояний какой-либо материальной системы, непрерывную совокупность каких-либо однородных явлений можно трактовать как своего рода «пространство». Вот один из примеров. Опыт показывает, что нормальное человеческое зрение трёхцветно, т. е. всякое цветовое ощущение Ц есть комбинация — сумма трёх основных ощущений: красного К, зелёного З и синего С, с определёнными интенсивностями. Обозначая эти интенсивности в некоторых единицах через х, у, z, можно написать Ц = xK + уЗ + zC. Подобно тому, как точку можно двигать в пространстве вверх и вниз, вправо и влево, вперёд и назад, так и ощущение цвета Ц может непрерывно меняться в трёх направлениях с изменением составляющих его частей — красного, зелёного и синего. По аналогии можно сказать, что совокупность всех цветов есть трёхмерное пространство — «пространство цветов». Непрерывное изменение цвета можно изображать как линию в этом пространстве. Далее, если даны два цвета, например красный К и белый Б, то, смешивая их в разных пропорциях, получают непрерывную последовательность цветов, которую можно назвать прямолинейным отрезком КБ. Представление о том, что розовый цвет Р лежит между красным и белым и что более густой розовый лежит ближе к красному, не требует разъяснения. Т. о., возникают понятия о простейших «пространственных» формах (линия, отрезок) и отношениях (между, ближе) в пространстве цветов. Далее, можно ввести точное определение расстояния (например, по числу порогов различения, которое можно проложить между двумя цветами), определить поверхности и области цветов, подобно обычным поверхностям и геометрическим телам, и т.д. Так возникает учение о пространстве цветов, которое путём обобщения геометрических понятий отражает реальные свойства цветного зрения человека (см. Колориметрия).
         Другой пример. Состояние газа, находящегося в цилиндре под поршнем, определяется давлением и температурой. Совокупность всех возможных состояний газа можно представлять поэтому как двумерное пространство. «Точками» этого «пространства» служат состояния газа; «точки» различаются двумя «координатами» — давлением и температурой, подобно тому как точки на плоскости различаются значениями их координат. Непрерывное изменение состояния изображается линией в этом пространстве.
         Далее, можно представить себе любую материальную систему — механическую или физико-химическую. Совокупность всех возможных состояний этой системы называют «фазовым пространством». «Точками» этого пространства являются сами состояния. Если состояние системы определяется n величинами, то говорят, что система имеет n степеней свободы. Эти величины играют роль координат точки-состояния, как в примере с газом роль координат играли давление и температура. В соответствии с этим такое фазовое пространство системы называют n-мерным. Изменение состояния изображается линией в этом пространстве; отдельных области состояний, выделяемые по тем или иным признакам, будут областями фазового пространства, а границы областей будут поверхностями в этом пространстве. Если система имеет только две степени свободы, то её состояния можно изображать точками на плоскости. Так, состояние газа с давлением р и температурой Т изобразится точкой с координатами р и Т, а процессы, происходящие с газом, изобразятся линиями на плоскости. Этот метод графического изображения общеизвестен и постоянно используется в физике и технике для наглядного представления процессов и их закономерностей. Но если число степеней свободы больше 3, то простое графическое изображение (даже в пространстве) становится невозможным. Тогда, чтобы сохранить полезные геометрические аналогии, прибегают к представлению об абстрактном фазовом пространстве. Так, наглядные графические методы перерастают в это абстрактное представление. Метод фазовых пространств широко применяется в механике, теоретической физике и физической химии. В механике движение механической системы изображают движением точки в её фазовом пространстве. В физической химии особенно важно рассматривать форму и взаимное прилегание тех областей фазового пространства системы из нескольких веществ, которые соответствуют качественно различным состояниям. Поверхности, разделяющие эти области, суть поверхности переходов от одного качества к другому (плавление, кристаллизация и т.п.). В самой Г. также рассматривают абстрактные пространства, «точками» которых служат фигуры; так определяют «пространства» кругов, сфер, прямых и т.п. В механике и теории относительности вводят также абстрактное четырёхмерное пространство, присоединяя к трём пространственным координатам время в качестве четвёртой координаты. Это означает, что события нужно различать не только по положению в пространстве, но и во времени.
         Т. о., становится понятным, как непрерывные совокупности тех или иных объектов, явлений, состояний могут подводиться под обобщённое понятие пространства. В таком пространстве можно проводить «линии», изображающие непрерывные последовательности явлений (состояний), проводить «поверхности» и определять подходящим образом «расстояния» между «точками», давая тем самым количественное выражение физическая понятия о степени различия соответствующих явлений (состояний), и т.п. Так по аналогии с обычной Г. возникает «геометрия» абстрактного пространства; последнее может даже мало походить на обычное пространство, будучи, например, неоднородным по своим геометрическим свойствам и конечным, подобно неравномерно искривленной замкнутой поверхности.
         Предметом Г. в обобщённом смысле оказываются не только пространственные формы и отношения, но любые формы и отношения, которые, будучи взяты в отвлечении от своего содержания, оказываются сходными с обычными пространственными формами и отношениями. Эти пространственно-подобные формы действительности называют «пространствами» и «фигурами». Пространство в этом смысле есть непрерывная совокупность однородных объектов, явлений, состояний, которые играют роль точек пространства, причём в этой совокупности имеются отношения, сходные с обычными пространственными отношениями, как, например, расстояние между точками, равенство фигур и т.п. (фигура — вообще часть пространства). Г. рассматривает эти формы действительности в отвлечении от конкретного содержания, изучение же конкретных форм и отношений в связи с их качественно своеобразным содержанием составляет предмет других наук, а Г. служит для них методом. Примером может служить любое приложение абстрактной Г., хотя бы указанное выше применение n-мерного пространства в физической химии. Для Г. характерен такой подход к объекту, который состоит в обобщении и перенесении на новые объекты обычных геометрических понятий и наглядных представлений. Именно это и делается в приведённых выше примерах пространства цветов и др. Этот геометрический подход вовсе не является чистой условностью, а соответствует самой природе явлений. Но часто одни и те же реальные факты можно изображать аналитически или геометрически, как одну и ту же зависимость можно задавать уравнением или линией на графике.
         Не следует, однако, представлять развитие Г. так, что она лишь регистрирует и описывает на геометрическом языке уже встретившиеся на практике формы и отношения, подобные пространственным. В действительности Г. определяет широкие классы новых пространств и фигур в них, исходя из анализа и обобщения данных наглядной Г. и уже сложившихся геометрических теорий. При абстрактном определении эти пространства и фигуры выступают как возможные формы действительности. Они, стало быть, не являются чисто умозрительными конструкциями, а должны служить, в конечном счёте, средством исследования и описания реальных фактов. Лобачевский, создавая свою Г., считал её возможной теорией пространственных отношений. И так же как его Г. получила обоснование в смысле её логической состоятельности и применимости к явлениям природы, так и всякая абстрактная геометрическая теория проходит такую же двойную проверку. Для проверки логической состоятельности существенное значение имеет метод построения математических моделей новых пространств. Однако окончательно укореняются в науке только те абстрактные понятия, которые оправданы и построением искусственной модели, и применениями, если не прямо в естествознании и технике, то хотя бы в др. математических теориях, через которые эти понятия так или иначе связываются с действительностью. Лёгкость, с которой математики и физики оперируют теперь разными «пространствами», достигнута в результате долгого развития Г. в тесной связи с развитием математики в целом и других точных наук. Именно вследствие этого развития сложилась и приобрела большое значение вторая сторона Г., указанная в общем определении, данном в начале статьи: включение в Г. исследования форм и отношений, сходных с формами и отношениями в обычном пространстве.
         В качестве примера абстрактной геометрической теории можно рассмотреть Г. n-мерного евклидова пространства. Она строится путём простого обобщения основных положений обычной Г., причём для этого имеется несколько возможностей: можно, например, обобщать аксиомы обычной Г., но можно исходить и из задания точек координатами. При втором подходе n-мерное пространство определяют как множество каких-либо элементов-точек, задаваемых (каждая) n числами x1, x2,…, xn, расположенными в определённом порядке, — координатами точек. Далее, расстояние между точками Х = (x1, x2,…, xn) и X'= (x’1, x’2,…, х’n) определяется формулой:
         0198944106.tif
         что является прямым обобщением известной формулы для расстояния в трёхмерном пространстве. Движение определяют как преобразование фигуры, которое не изменяет расстояний между её точками. Тогда предмет n-мерной Г. определяется как исследование тех свойств фигур, которые не меняются при движениях. На этой основе легко вводятся понятия о прямой, о плоскостях различного числа измерений от двух до n—1, о шаре и т.д. Т. о. складывается богатая содержанием теория, во многом аналогичная обычной евклидовой Г., но во многом и отличная от неё. Нередко бывает, что результаты, полученные для трёхмерного пространства, легко переносятся с соответствующими изменениями на пространство любого числа измерений. Например, теорема о том, что среди всех тел одинакового объёма наименьшую площадь поверхности имеет шар, читается дословно так же в пространстве любого числа измерений [нужно лишь иметь в виду n-мерный объём, (n—1)-мерную площадь и n-мерный шар, которые определяются вполне аналогично соответствующим понятиям обычной Г.]. Далее, в n-мерном пространстве объём призмы равен произведению площади основания на высоту, а объём пирамиды — такому произведению, деленному на n. Такие примеры можно продолжить. С др. стороны, в многомерных пространствах обнаруживаются также качественно новые факты.
         Истолкования геометрии. Одна и та же геометрическая теория допускает разные приложения, разные истолкования (осуществления, модели, или интерпретации). Всякое приложение теории и есть не что иное, как осуществление некоторых её выводов в соответствующей области явлений.
         Возможность разных осуществлений является общим свойством всякой математической теории. Так, арифметические соотношения реализуются на самых различных наборах предметов; одно и то же уравнение описывает часто совсем разные явления. Математика рассматривает лишь форму явления, отвлекаясь от содержания, а с точки зрения формы многие качественно различные явления оказываются часто сходными. Разнообразие приложений математики и, в частности, Г. обеспечивается именно её абстрактным характером. Считают, что некоторая система объектов (область явлений) даёт осуществление теории, если отношения в этой области объектов могут быть описаны на языке теории так, что каждое утверждение теории выражает тот или иной факт, имеющий место в рассматриваемой области. В частности, если теория строится на основе некоторой системы аксиом, то истолкование этой теории состоит в таком сопоставлении её понятий с некоторыми объектами и их отношениями, при котором аксиомы оказываются выполненными для этих объектов.
         Евклидова Г. возникла как отражение фактов действительности. Её обычная интерпретация, в которой прямыми считаются натянутые нити, движением — механическое перемещение и т.д., предшествует Г. как математической теории. Вопрос о других интерпретациях не ставился и не мог быть поставлен, пока не выявилось более абстрактное понимание геометрии. Лобачевский создал неевклидову Г. как возможную геометрию, и тогда возник вопрос о её реальном истолковании. Эта задача была решена в 1868 Э. Бельтрами, который заметил, что геометрия Лобачевского совпадает с внутренней Г. поверхностей постоянной отрицательной кривизны, т. е. теоремы геометрии Лобачевского описывают геометрические факты на таких поверхностях (при этом роль прямых выполняют геодезические линии, а роль движений — изгибания поверхности на себя). Поскольку вместе с тем такая поверхность есть объект евклидовой Г., оказалось, что геометрия Лобачевского истолковывается в понятиях геометрии Евклида. Тем самым была доказана непротиворечивость геометрии Лобачевского, т.к. противоречие в ней в силу указанного истолкования влекло бы противоречие в геометрии Евклида.
         Т. о., выясняется двоякое значение истолкования геометрической теории — физическое и математическое. Если речь идёт об истолковании на конкретных объектах, то получается опытное доказательство истинности теории (конечно, с соответствующей точностью); если же сами объекты имеют абстрактный характер (как геометрическая поверхность в рамках геометрии Евклида), то теория связывается с другой математической теорией, в данном случае с евклидовой Г., а через неё с суммированными в ней опытными данными. Такое истолкование одной математической теории посредством другой стало математическим методом обоснования новых теорий, приёмом доказательства их непротиворечивости, поскольку противоречие в новой теории порождало бы противоречие в той теории, в которой она интерпретируется. Но теория, посредством которой производится истолкование, в свою очередь, нуждается в обосновании. Поэтому указанный математический метод не снимает того, что окончательным критерием истины для математических теорий остаётся практика. В настоящее время геометрические теории чаще всего истолковывают аналитически; например, точки на плоскости Лобачевского можно связывать с парами чисел х и у, прямые — определять уравнениями и т.п. Этот приём даёт обоснование теории потому, что сам математический анализ обоснован, в конечном счёте, огромной практикой его применения.
         Современная геометрия. Принятое в современной математике формально-математическое определение понятий пространства и фигуры исходит из понятия множества (см. Множеств теория). Пространство определяется как множество каких-либо элементов («точек») с условием, что в этом множестве установлены некоторые отношения, сходные с обычными пространственными отношениями. Множество цветов, множество состояний физической системы, множество непрерывных функций, заданных на отрезке [0, 1], и т.п. образуют пространства, где точками будут цвета, состояния, функции. Точнее, эти множества понимаются как пространства, если в них фиксируются только соответствующие отношения, например расстояние между точками, и те свойства и отношения, которые через них определяются. Так, расстояние между функциями можно определить как максимум абсолютной величины их разности: max|f (x)—g (x)|. Фигура определяется как произвольное множество точек в данном пространстве. (Иногда пространство — это система из множеств элементов. Например, в проективной Г. принято рассматривать точки, прямые и плоскости как равноправные исходные геометрические объекты, связанные отношениями «соединения».)
         Основные типы отношений, которые в разных комбинациях приводят ко всему разнообразию «пространств» современной Г., следующие:
         1) Общими отношениями, имеющимися во всяком множестве, являются отношения принадлежности и включения: точка принадлежит множеству, и одно множество есть часть другого. Если приняты во внимание только эти отношения, то в множестве не определяется ещё никакой «геометрии», оно не становится пространством. Однако, если выделены некоторые специальные фигуры (множества точек), то «геометрия» пространства может определяться законами связи точек с этими фигурами. Такую роль играют аксиомы сочетания в элементарной, аффинной, проективной Г.; здесь специальными множествами служат прямые и плоскости.
         Тот же принцип выделения некоторых специальных множеств позволяет определить понятие топологического пространства — пространства, в котором в качестве специальных множеств выделены «окрестности» точек (с условием, что точка принадлежит своей окрестности и каждая точка имеет хотя бы одну окрестность; наложение на окрестности дальнейших требований определяет тот или иной тип топологических пространств). Если всякая окрестность заданной точки имеет общие точки с некоторым множеством, то такая точка называется точкой прикосновения этого множества. Два множества можно назвать соприкасающимися, если хотя бы одно из них содержит точки прикосновения другого; пространство или фигура будет непрерывной, или, как говорят, связной, если её нельзя разбить на две несоприкасающиеся части; преобразование непрерывно, если оно не нарушает соприкосновений. Т. о., понятие топологического пространства служит для математического выражения понятия непрерывности. [Топологическое пространство можно определить также другими специальными множествами (замкнутыми, открытыми) или непосредственно отношением прикосновения, при котором любому множеству точек ставятся в соответствие его точки прикосновения.] Топологические пространства как таковые, множества в них и их преобразования служат предметом топологии. Предмет собственно Г. (в значительной её части) составляет исследование топологических пространств и фигур в них, наделённых ещё дополнительными свойствами.
         2) Второй важнейший принцип определения тех или иных пространств и их исследования представляет введение координат. Многообразием называется такое (связное) топологическое пространство, в окрестности каждой точки которого можно ввести координаты, поставив точки окрестности во взаимно однозначное и взаимно непрерывное соответствие с системами из n действительных чисел x1, x2,(, xn. Число n есть число измерений многообразия. Пространства, изучаемые в большинстве геометрических теорий, являются многообразиями; простейшие геометрические фигуры (отрезки, части поверхностей, ограниченные кривыми, и т.п.) обычно — куски многообразий. Если среди всех систем координат, которые можно ввести в кусках многообразия, выделяются системы координат такого рода, что одни координаты выражаются через другие дифференцируемыми (то или иное число раз) или аналитическими функциями, то получают т. н. гладкое (аналитическое) многообразие. Это понятие обобщает наглядное представление о гладкой поверхности. Гладкие многообразия как таковые составляют предмет т. н. дифференциальной топологии. В собственно Г. они наделяются дополнительными свойствами. Координаты с принятым условием дифференцируемости их преобразований дают почву для широкого применения аналитических методов — дифференциального и интегрального исчисления, а также векторного и тензорного анализа (см. Векторное исчисление, Тензорное исчисление). Совокупность теорий Г., развиваемых этими методами, образует общую дифференциальную Г.; простейшим случаем её служит классическая теория гладких кривых и поверхностей, которые представляют собою не что иное, как одно- и двумерные дифференцируемые многообразия.
         3) Обобщение понятия движения как преобразования одной фигуры в другую приводит к общему принципу определения разных пространств, когда пространством считается множество элементов (точек), в котором задана группа взаимно однозначных преобразований этого множества на себя. «Геометрия» такого пространства состоит в изучении тех свойств фигур, которые сохраняются при преобразованиях из этой группы. Поэтому с точки зрения такой Г. фигуры можно считать «равными», если одна переходит в другую посредством преобразования из данной группы. Например, евклидова Г. изучает свойства фигур, сохраняющиеся при движениях, аффинная Г. — свойства фигур, сохраняющиеся при аффинных преобразованиях, топология — свойства фигур, сохраняющиеся при любых взаимно однозначных и непрерывных преобразованиях. В эту же схему включаются геометрия Лобачевского, проективная Г. и др. Фактически этот принцип соединяется с введением координат. Пространство определяется как гладкое многообразие, в котором преобразования задаются функциями, связывающими координаты каждой данной точки и той, в которую она переходит (координаты образа точки задаются как функции координат самой точки и параметров, от которых зависит преобразование; например, аффинные преобразования определяются как линейные: x'i = ai1x1 + ai2x2 +…+ ainxn, i = 1, …, n). Поэтому общим аппаратом разработки таких «геометрий» служит теория непрерывных групп преобразований. Возможна другая, по существу эквивалентная, точка зрения, согласно которой задаются не преобразования пространства, а преобразования координат в нём, причём изучаются те свойства фигур, которые одинаково выражаются в разных системах координат. Эта точка зрения нашла применение в теории относительности, которая требует одинакового выражения физических законов в разных системах координат, называемых в физике системами отсчёта.
         4) Другой общий принцип определения пространств, указанный в 1854 Риманом, исходит из обобщения понятия о расстоянии. По Риману, пространство — это гладкое многообразие, в котором задан закон измерения расстояний, точнее длин, бесконечно малыми шагами, т. е. задаётся дифференциал длины дуги кривой как функция координат точки кривой и их дифференциалов. Это есть обобщение внутренней Г. поверхностей, определённой Гауссом как учение о свойствах поверхностей, которые могут быть установлены измерением длин кривых на ней. Простейший случай представляют т. н. римановы пространства, в которых в бесконечно малом имеет место теорема Пифагора (т. е. в окрестности каждой точки можно ввести координаты так, что в этой точке квадрат дифференциала длины дуги будет равен сумме квадратов дифференциалов координат; в произвольных же координатах он выражается общей положительной квадратичной формой; см. Римановы геометрии (См. Риманова геометрия)). Такое пространство, следовательно, евклидово в бесконечно малом, но в целом оно может не быть евклидовым, подобно тому как кривая поверхность лишь в бесконечно малом может быть сведена к плоскости с соответствующей точностью. Геометрии Евклида и Лобачевского оказываются частным случаем этой римановой Г. Наиболее широкое обобщение понятия расстояния привело к понятию общего метрического пространства как такого множества элементов, в котором задана «метрика», т. е. каждой паре элементов отнесено число — расстояние между ними, подчинённое только очень общим условиям. Эта идея играет важную роль в функциональном анализе (См. Функциональный анализ) и лежит в основе некоторых новейших геометрических теорий, таких, как внутренняя Г. негладких поверхностей и соответствующие обобщения римановой Г.
         5) Соединение идеи Римана об определении «геометрии» в бесконечно малых областях многообразия с определением «геометрии» посредством группы преобразований привело (Э. Картан, 1922—25) к понятию о таком пространстве, в котором преобразования задаются лишь в бесконечно малых областях; иными словами, здесь преобразования устанавливают связь только бесконечно близких кусков многообразия: один кусок преобразуется в другой, бесконечно близкий. Поэтому говорят о пространствах со «связностью» того или иного типа. В частности, пространства с «евклидовой связностью» суть римановы. Дальнейшие обобщения восходят к понятию о пространстве как о гладком многообразии, на котором задано вообще «поле» какого-либо «объекта», которым может служить квадратичная форма, как в римановой Г., совокупность величин, определяющих связность, тот или иной тензор и др. Сюда же можно отнести введённые в недавнее время т. н. расслоенные пространства. Эти концепции включают, в частности, связанное с теорией относительности обобщение римановой Г., когда рассматриваются пространства, где метрика задаётся уже не положительной, а знакопеременной квадратичной формой (такие пространства также называют римановыми, или псевдоримановыми, если хотят отличить их от римановых в первоначальном смысле). Эти пространства являются пространствами со связностью, определённой соответствующей группой, отличной от группы евклидовых движений.
         На почве теории относительности возникла теория пространств, в которых определено понятие следования точек, так что каждой точке Х отвечает множество V (X) следующих за нею точек. (Это является естественным математическим обобщением следования событий, определённого тем, что событие Y следует за событием X, если Х воздействует на Y, и тогда Y следует за Х во времени в любой системе отсчёта.) Т. к. само задание множеств V определяет точки, следующие за X, как принадлежащие множеству V (X), то определение этого типа пространств оказывается применением первого из перечисленных выше принципов, когда «геометрия» пространства определяется выделением специальных множеств. Конечно, при этом множества V должны быть подчинены соответствующим условиям; в простейшем случае — это выпуклые конусы. Эта теория включает теорию соответствующих псевдоримановых пространств.
         6) Аксиоматический метод в его чистом виде служит теперь либо для оформления уже готовых теорий, либо для определения общих типов пространств с выделенными специальными множествами. Если же тот или иной тип более конкретных пространств определяют, формулируя их свойства как аксиомы, то используют либо координаты, либо метрику и др. Непротиворечивость и тем самым осмысленность аксиоматической теории проверяется указанием модели, на которой она реализуется, как это впервые было сделано для геометрии Лобачевского. Сама модель строится из абстрактных математических объектов, поэтому «окончательное обоснование» любой геометрической теории уходит в область оснований математики вообще, которые не могут быть окончательными в полном смысле, но требуют углубления (см. Математика, Аксиоматический метод).
         Перечисленные принципы в разных сочетаниях и вариациях порождают обширное разнообразие геометрических теорий. Значение каждой из них и степень внимания к её задачам определяются содержательностью этих задач и получаемых результатов, её связями с др. теориями Г., с др. областями математики, с точным естествознанием и задачами техники. Каждая данная геометрическая теория определяется среди других геометрических теорий, во-первых, тем, какое пространство или какого типа пространства в ней рассматриваются. Во-вторых, в определение теории входит указание на исследуемые фигуры. Так различают теории многогранников, кривых, поверхностей, выпуклых тел и т.д. Каждая из этих теорий может развиваться в том или ином пространстве. Например, можно рассматривать теорию многогранников в обычном евклидовом пространстве, в n-мерном евклидовом пространстве, в пространстве Лобачевского и др. Можно развивать обычную теорию поверхностей, проективную, в пространстве Лобачевского и т.д. В-третьих, имеет значение характер рассматриваемых свойств фигур. Так, можно изучать свойства поверхностей, сохраняющиеся при тех или иных преобразованиях; можно различать учение о кривизне поверхностей, учение об изгибаниях (т. е. о деформациях, не меняющих длин кривых на поверхности), внутреннюю Г. Наконец, в определение теории можно включать её основной метод и характер постановки задач. Так различают Г.: элементарную, аналитическую, дифференциальную; например, можно говорить об элементарной или аналитической Г. пространства Лобачевского. Различают Г. «в малом», рассматривающую лишь свойства сколь угодно малых кусков геометрического образа (кривой, поверхности, многообразия), от Г. «в целом», изучающей, как ясно из её названия, геометрические образы в целом на всём их протяжении. Очень общим является различение аналитических методов и методов синтетической Г. (или собственно геометрических методов); первые используют средства соответствующих исчислений: дифференциального, тензорного и др., вторые оперируют непосредственно геометрическими образами.
         Из всего разнообразия геометрических теорий фактически более всего развиваются n-мерная евклидова Г. и риманова (включая псевдориманову) Г. В первой разрабатывается, в особенности, теория кривых и поверхностей (и гиперповерхностей разного числа измерений), причём особое развитие получает исследование поверхностей «в целом» и поверхностей, существенно более общих, чем гладкие, изучавшиеся в классической дифференциальной Г.; сюда же включаются многогранники (многогранные поверхности). Затем нужно назвать теорию выпуклых тел, которая, впрочем, в большой части может быть отнесена к теории поверхностей в целом, т.к. тело определяется своей поверхностью. Далее — теория правильных систем фигур, т. е. допускающих движения, переводящие всю систему саму в себя и какую-либо её фигуру в любую другую (см. Федоровские группы (См. Фёдоровская группа)). Можно отметить, что значительное число важнейших результатов в этих областях принадлежат сов. геометрам: очень полная разработка теории выпуклых поверхностей и существенное развитие теории общих невыпуклых поверхностей, разнообразные теоремы о поверхностях в целом (существования и единственности выпуклых поверхностей с заданной внутренней метрикой или с заданной той пли иной «функцией кривизны», теорема о невозможности существования полной поверхности с кривизной, всюду меньшей какого-либо отрицательного числа, и др.), исследование правильного деления пространства и др.
         В теории римановых пространств исследуются вопросы, касающиеся связи их метрических свойств с топологическим строением, поведение геодезических (кратчайших на малых участках) линий в целом, как, например, вопрос о существовании замкнутых геодезических, вопросы «погружения», т. е. реализации данного n-мерного риманова пространства в виде n-мерной поверхности в евклидовом пространстве какого-либо числа измерений, вопросы псевдоримановой Г., связанные с общей теорией относительности, и др. К этому можно добавить развитие разнообразных обобщений римановой Г. как в духе общей дифференциальной Г., так и в духе обобщений синтетической Г.
         В дополнение следует упомянуть алгебраическую геометрию (См. Алгебраическая геометрия), развившуюся из аналитической Г. и исследующую прежде всего геометрические образы, задаваемые алгебраическими уравнениями; она занимает особое место, т.к. включает не только геометрические, но также алгебраические и арифметические проблемы. Существует также обширная и важная область исследования бесконечномерных пространств, которая, однако, не причисляется к Г., а включается в функциональный анализ, т.к. бесконечномерные пространства конкретно определяются как пространства, точками которых служат те или иные функции. Тем не менее в этой области есть много результатов и проблем, носящих подлинно геометрический характер и которые поэтому следует относить к Г.
         Значение геометрии. Применение евклидовой Г. представляет самое обычное явление всюду, где определяются площади, объёмы и т.п. Вся техника, поскольку в ней играют роль формы и размеры тел, пользуется евклидовой Г. Картография, геодезия, астрономия, все графические методы, механика немыслимы без Г. Ярким примером является открытие И. Кеплером факта вращения планет по эллипсам; он мог воспользоваться тем, что эллипс был изучен ещё древними геометрами. Глубокое применение Г. представляет геометрическая кристаллография, послужившая источником и областью приложения теории правильных систем фигур (см. Кристаллография).
         Более отвлечённые геометрические теории находят широкое применение в механике и физике, когда совокупность состояний какой-либо системы рассматривается как некоторое пространство (см. раздел Обобщение предмета геометрии). Так, все возможные конфигурации (взаимное расположение элементов) механической системы образуют «конфигурационное пространство»; движение системы изображается движением точки в этом пространстве. Совокупность всех состояний физической системы (в простейшем случае — положения и скорости образующих систему материальных точек, например молекул газа) рассматривается как «фазовое пространство» системы. Эта точка зрения находит, в частности, применение в статистической физике (См. Статистическая физика) и др.
         Впервые понятие о многомерном пространстве зародилось в связи с механикой ещё у Ж. Лагранжа, когда к трём пространств. координатам х, у, z в качестве четвёртой формально присоединяется время t. Так появляется четырёхмерное «пространство — время», где точка определяется четырьмя координатами х, у, z, t. Каждое событие характеризуется этими четырьмя координатами и, отвлеченно, множество всех событий в мире оказывается четырёхмерным пространством. Этот взгляд получил развитие в геометрической трактовке теории относительности, данной Г. Минковским (См. Минковский), а потом в построении А. Эйнштейном общей теории относительности. В ней он воспользовался четырехмерной римановой (псевдоримановой) Г. Так геометрические теории, развившиеся из обобщения данных пространственного опыта, оказались математическим методом построения более глубокой теории пространства и времени. В свою очередь теория относительности дала мощный толчок развитию общих геометрических теорий. Возникнув из элементарной практики, Г. через ряд абстракций и обобщений возвращается к естествознанию и практике на более высокой ступени в качестве метода.
         С геометрической точки зрения многообразие пространства — времени обычно трактуется в общей теории относительности как неоднородное римановского типа, но с метрикой, определяемой знакопеременной формой, приводимой в бесконечно малой области к виду
         dx2 + dy2 + dz2 — c2dt2
         (с — скорость света в вакууме). Само пространство, поскольку его можно отделить от времени, оказывается также неоднородным римановым. С современной геометрической точки зрения лучше смотреть на теорию относительности следующим образом. Специальная теория относительности утверждает, что многообразие пространства — времени есть псевдоевклидово пространство, т. е. такое, в котором роль «движений» играют преобразования, сохраняющие квадратичную форму
         x2 + y2 + z2 — c2t2
         точнее, это есть пространство с группой преобразований, сохраняющих указанную квадратичную форму. От всякой формулы, выражающей физический закон, требуется, чтобы она не менялась при преобразованиях группы этого пространства, которые суть так называемые преобразования Лоренца. Согласно же общей теории относительности, многообразие пространства — времени неоднородно и лишь в каждой «бесконечно малой» области сводится к псевдоевклидову, т. е. оно есть пространство картановского типа (см. раздел Современная геометрия). Однако такое понимание стало возможно лишь позже, т.к. само понятие о пространствах такого типа появилось после теории относительности и было развито под её прямым влиянием.
         В самой математике положение и роль Г. определяются прежде всего тем, что через неё в математику вводилась непрерывность. Математика как наука о формах действительности сталкивается прежде всего с двумя общими формами: дискретностью и непрерывностью. Счёт отдельных (дискретных) предметов даёт арифметику, пространств. непрерывность изучает Г. Одним из основных противоречий, движущих развитие математики, является столкновение дискретного и непрерывного. Уже деление непрерывных величин на части и измерение представляют сопоставление дискретного и непрерывного: например, масштаб откладывается вдоль измеряемого отрезка отдельными шагами. Противоречие выявилось с. особой ясностью, когда в Древней Греции (вероятно, в 5 в. до н. э.) была открыта несоизмеримость стороны и диагонали квадрата: длина диагонали квадрата со стороной 1 не выражалась никаким числом, т.к. понятия иррационального числа не существовало. Потребовалось обобщение понятия числа — создание понятия иррационального числа (что было сделано лишь много позже в Индии). Общая же теория иррациональных чисел была создана лишь в 70-х гг. 19 в. Прямая (а вместе с нею и всякая фигура) стала рассматриваться как множество точек. Теперь эта точка зрения является господствующей. Однако затруднения теории множеств показали её ограниченность. Противоречие дискретного и непрерывного не может быть полностью снято.
         Общая роль Г. в математике состоит также в том, что с нею связано идущее от пространственных представлений точное синтетическое мышление, часто позволяющее охватить в целом то, что достигается анализом и выкладками лишь через длинную цепь шагов. Так, Г. характеризуется не только своим предметом, но и методом, идущим от наглядных представлений и оказывающимся плодотворным в решении многих проблем др. областей математики. В свою очередь, Г. широко использует их методы. Т. о., одна и та же математическая проблема может сплошь и рядом трактоваться либо аналитически, либо геометрически, или в соединении обоих методов.
         В известном смысле, почти всю математику можно рассматривать как развивающуюся из взаимодействия алгебры (первоначально арифметики) и Г., а в смысле метода — из сочетания выкладок и геометрических представлений. Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметические свойства чисел с непрерывностью. Вот некоторые основные моменты влияния Г. в математике.
         1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объемов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитическое определение интеграла не давалось до 1-й половины 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графическое представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геометрический источник его понятий, как, например, в терминах: «точка разрыва», «область изменения переменной» и т.п. Первый курс анализа, написанный в 1696 Г. Лопиталем (См. Лопиталь), назывался: «Анализ бесконечно малых для понимания кривых линий». Теория дифференциальных уравнений в большей части трактуется геометрически (интегральные кривые и т.п.). Вариационное исчисление возникло и развивается в большой мере на задачах Г., и её понятия играют в нём важную роль.
         2) Комплексные числа окончательно утвердились в математике на рубеже 18—19 вв. только вследствие сопоставления их с точками плоскости, т. е. путём построения «комплексной плоскости». В теории функций комплексного переменного геометрическими методам отводится существенная роль. Само понятие аналитической функции w = f (z) комплексного переменного может быть определено чисто геометрически: такая функция есть Конформное отображение плоскости z (или области плоскости z) в плоскость w. Понятия и методы римановой Г. находят применение в теории функций нескольких комплексных переменных.
         3) Основная идея функционального анализа состоит в том, что функции данного класса (например, все непрерывные функции, заданные на отрезке [0,1]) рассматриваются как точки «функционального пространства», причём отношения между функциями истолковываются как геометрические отношения между соответствующими точками (например, сходимость функций истолковывается как сходимость точек, максимум абсолютной величины разности функций — как расстояние, и т.п.). Тогда многие вопросы анализа получают геометрическое освещение, оказывающееся во многих случаях очень плодотворным. Вообще, представление тех или иных математических объектов (функций, фигур и др.) как точек некоторого пространства с соответствующим геометрическим толкованием отношений этих объектов является одной из наиболее общих и плодотворных идей современной математики, проникшей почти во все её разделы.
         4) Г. оказывает влияние на алгебру и даже на арифметику — теорию чисел. В алгебре используют, например, понятие векторного пространства. В теории чисел создано геометрическое направление, позволяющее решать многие задачи, едва поддающиеся вычислительному методу. В свою очередь нужно отметить также графические методы расчётов (см. Номография) и геометрические методы современной теории вычислений и вычислительных машин.
         5) Логическое усовершенствование и анализ аксиоматики Г. играли определяющую роль в выработке абстрактной формы аксиоматического метода с его полным отвлечением от природы объектов и отношений, фигурирующих в аксиоматизируемой теории. На том же материале вырабатывались понятия непротиворечивости, полноты и независимости аксиом.
         В целом взаимопроникновение Г. и др. областей математики столь тесно, что часто границы оказываются условными и связанными лишь с традицией. Почти или вовсе не связанными с Г. остаются лишь такие разделы, как абстрактная алгебра, математическая логика и некоторые др.
         Лит.: Основные классические работы. Евклид, Начала, пер. с греч., кн. 1—15, М. — Л.,1948—50; Декарт Р., Геометрия, пер. с латин., М. — Л., 1938; Монж Г., Приложения анализа к геометрии, пер. с франц., М. — Л., 1936; Ponselet J. V., Traite des proprietes projectives des figures, Metz — Р., 1822; Гаусс К. Ф., Общие исследования о кривых поверхностях, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Лобачевский Н. И., Полн. собр. соч., т. 1—3, М. — Л., 1946—51; Больаи Я., Appendix. Приложение,..., пер. с латин., М. — Л., 1950; Риман Б., О гипотезах, лежащих в основаниях геометрии, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Клейн Ф., Сравнительное обозрение новейших геометрических исследований («Эрлангенская программа»), там же; Картан Э., Группы голономии обобщенных пространств, пер. с франц., в кн.: VIII-й Международный конкурс на соискание премии имени Николая Ивановича Лобачевского (1937 год), Казань, 1940; Гильберт Д., Основания геометрии, пер. с нем., М. — Л., 1948.
         История. Кольман Э., История математики в древности, М., 1961; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Cantor М., Vorlesungen uber die Geschichte der Mathematik, Bd 1—4, Lpz., 1907—08.
         Курсы. а) Основания геометрии. Каган В. Ф., Основания геометрии, ч. 1, М. — Л., 1949; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961; Погорелов А. В., Основания геометрии, 3 изд., М., 1968.
         б) Элементарная геометрия. Адамар Ж., Элементарная геометрия, пер. с франц., ч. 1, 3 изд., М., 1948, ч. 2, М., 1938; Погорелов А. В., Элементарная геометрия, М., 1969.
         в) Аналитическая геометрия. Александров П. С., Лекции по аналитической геометрии..., М., 1968; Погорелов А. В., Аналитическая геометрия, 3 изд., М., 1968.
         г) Дифференциальная геометрия. Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Погорелов А. В., Дифференциальная геометрия, М., 1969.
         д) Начертательная и проективная геометрия. Глаголев Н. А., Начертательная геометрия, 3 изд., М. — Л., 1953; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.
         е) Риманова геометрия и её обобщения. Рашевский П. К., Риманова геометрия и тензорный анализ, 2 изд., М. — Л., 1964; Норден А. П., Пространства аффинной связности, М. — Л., 1950; Картан Э., Геометрия римановых пространств, пер. с франц., М. — Л., 1936; Эйзенхарт Л. П., Риманова геометрия, пер. с англ., М., 1948.
         Некоторые монографии по геометрии. Федоров Е. С., Симметрия и структура кристаллов. Основные работы, М., 1949; Александров А. Д., Выпуклые многогранники, М. — Л., 1950; его же, Внутренняя геометрия выпуклых поверхностей, М. — Л., 1948; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969; Буземан Г., Геометрия геодезических, пер. с англ., М., 1962; его же, Выпуклые поверхности, пер. с англ., М., 1964; Картан Э., Метод подвижного репера, теория непрерывных групп и обобщенные пространства, пер. с франц., М. — Л., 1936; Фиников С. П., Метод внешних форм Картана в дифференциальной геометрии, М. — Л., 1948; его же, Проективно-дифференциальная геометрия, М. — Л., 1937; его же, Теория конгруенций, М. — Л., 1950; Схоутен И. А., Стройк Д. Дж., Введение в новые методы дифференциальной геометрии, пер. с англ., т. 1—2, М. — Л., 1939—48; Номидзу К., Группы Ли и дифференциальная геометрия, пер. с англ., М., 1960; Милнор Дж., Теория Морса, пер. с англ., М., 1965.
         А. Д. Александров.
Мультимедийная энциклопедия
раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В планиметрии рассматриваются фигуры на плоскости; в стереометрии изучаются пространственные фигуры. ИСТОРИЯ Египет. Если не учитывать весьма скромный вклад древних обитателей долины между Тигром и Евфратом и Малой Азии, то геометрия зародилась в Древнем Египте до 1700 до н.э. Во время сезона тропических дождей Нил пополнял свои запасы воды и разливался. Вода покрывала участки обработанной земли, и в целях налогообложения нужно было установить, сколько земли потеряно. Землемеры использовали в качестве измерительного инструмента туго натянутую веревку. Еще одним стимулом накопления геометрических знаний египтянами стали такие виды их деятельности, как возведение пирамид и изобразительное искусство. Основным источником наших знаний о древнеегипетской геометрии является относящийся примерно к 1700 до н.э. папирус Ринда, названный по имени владельца, египтолога Ринда (этот папирус также называется папирусом Ахмеса) и хранящийся ныне в Лондоне в Британском музее. Папирус Ринда свидетельствует о том, что древних египтян интересовали главным образом практические аспекты геометрии и что при накоплении геометрических фактов египтяне почти всецело руководствовались интуицией, экспериментом и приближенными представлениями. Греция. Около 600 до н.э. ионийские греки, совершившие путешествие в Египет, привезли на родину первые сведения о геометрии. Самым известным путешественником в Египет был Фалес (ок. 640 - ок. 546 до н.э.). Он был преуспевающим купцом, посвятившим последние годы жизни науке и политике. Фалес первым начал доказывать истинность геометрических соотношений, последовательно выводя их логически из некоторого набора общепринятых утверждений, называемых аксиомами или постулатами. Этот метод дедуктивного рассуждения, которому предстояло стать доминирующим в геометрии и фактически - во всей математике, сохраняет свое фундаментальное значение и в наши дни. Одним из наиболее знаменитых учеников Фалеса был Пифагор (ок. 570 - ок. 500 до н.э.). Он много путешествовал, а потом поселился в Кротоне, в Италии, где основал общество, занимавшееся изучением арифметики, музыки, геометрии и астрономии. Пифагор и его последователи доказали много новых теорем о треугольниках, окружностях, пропорциях и некоторых трехмерных телах. Пифагор доказал также знаменитую теорему, носящую ныне его имя, согласно которой площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах. Пифагор умер в изгнании, но его влияние на греческих математиков ощущалось на протяжении многих веков. После его кончины в Элее (город в Италии) новыми центрами развивающейся геометрии становились по очереди Афины и Александрия. Архит Тарентский (ок. 428 - ок. 365 до н.э.) и Гиппий Элидский (р. ок. 425 до н.э.) затратили много усилий на решение трех задач, игравших важную роль в древнегреческой математике: это задачи о трисекции угла, о построении квадрата, площадь которого равна площади данного круга (задача о квадратуре круга), и о построении куба, имеющего вдвое больший объем, чем данный куб (задача об удвоении куба). Хотя ныне известно, что с помощью циркуля и линейки (единственных орудий геометрических построений, известных древнегреческим математикам) эти задачи решить нельзя, тем не менее попытки это сделать не были напрасны. Они стимулировали изучение конических сечений и способствовали совершенствованию математических методов. Александрия. Афинская школа числила в своих рядах таких великих людей, как Платон и Аристотель. После смерти Аристотеля центр научной мысли переместился в Александрию (Египет), где в начале 3 в. до н.э. был основан знаменитый Александрийский Мусейон - один из главных научных центров античного мира. Живший в Александрии математик Евклид (3 в. до н.э.), биографические сведения о котором крайне скудны, собрал в 13 книгах своего сочинения значительную часть математических знаний того времени. Семь книг из 13 были посвящены геометрии, предмет которой был им тщательно и систематически изложен, различные утверждения и теоремы расположены в определенном порядке и перенумерованы. Была включена также теория пространственных тел, ограниченных плоскими поверхностями. Называлось это великое сочинение Начала, и последующие издания, точно придерживающиеся оригинала, стали основой обучения геометрии вплоть до нашего времени. Величайшим математиком античности был грек Архимед (ок. 287-212 до н.э.). Кроме множества других полученных им научных результатов и открытий, Архимед расширил ту часть Начал Евклида, в которой рассматривались пространственные тела, включив в их число сферу, цилиндр и конус. Другими великими александрийскими геометрами были Аполлоний Пергский (3 в. до н.э.; конические сечения), Птолемей (2 в. н.э.; астрономия) и Папп (3 в. н.э.; плоские кривые высших порядков). В 641 н.э. арабы разграбили Александрию и разрушили Мусейон и его библиотеку. Впрочем, греческая математика вступила в период застоя еще в начале 4 в. н.э, после кончины Паппа. Средневековье. После падения Александрии большинство работ древнегреческих математиков были рассеяны или утрачены. Некоторые из них, в том числе Начала Евклида, были переведены и изучались арабами и индийцами. И хотя эти народы породили нескольких великих математиков, среди которых наиболее известны индийские математики Ариабхата (ок. 476 - ок. 550) и Бхаскара II (ок. 1114-1185), все же их самой большой заслугой следует считать сохранение геометрии в период Средневековья. После падения Римской империи в 5 в. наука в Европе долгое время находилась почти в полном забвении. В 12 и 13 вв. Начала были переведены с греческого и арабского на латынь и современные европейские языки, а геометрия вошла в программу монастырских школ. Первый из этих переводов был выполнен Аделардом Батским в 1120. Новое время. За последние 300 лет доказательная геометрия была существенно расширена, а по своим методам и степени общности результатов она стала заметно отличаться от элементарной геометрии (т.е. геометрии, изложенной в Началах). Французский математик Ж.Дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств геометрических фигур в зависимости от их проекций. Тем самым он заложил основу проективной геометрии, которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. В 19 в. это направление получило существенное развитие. Проективная геометрия, конические сечения и новая геометрия треугольников и окружностей составили содержание современной т.н. чистой геометрии. Тесно связанная с проективной, начертательная геометрия была введена французским математиком Г. Монжем (1746-1818). Эта новая область геометрии была связана с представлением изображений геометрических фигур на плоскости и определением геометрическими средствами расстояний, углов и линий пересечения. Начертательная геометрия представляет собой основу технического черчения. В 1637 Р. Декарт (1596-1650), французский философ и математик, опубликовал свою Геометрию - первый труд по аналитической геометрии, позволивший применить в геометрии мощные алгебраические методы. Геометрические задачи всех видов теперь могли решаться в рамках единого подхода; кроме того, благодаря новым методам стала возможной постановка и решение новых задач, о которых древние не могли даже помыслить, но которые ныне находятся в самом центре математики и математической физики. Со времен первого появления Начал математики тщетно пытались доказать пятый постулат Евклида: через точку, не лежащую на прямой, можно провести только одну прямую, ей параллельную. В 19 в. было доказано, что можно построить непротиворечивую геометрию, используя все аксиомы и постулаты Евклида и отрицание постулата о параллельных, а это означало, что искомого доказательства пятого постулата не существует. Любая такая непротиворечивая геометрия получила название неевклидовой геометрии. Около 1830 Я.Бойяи (1802-1860) и Н.И.Лобачевский (1792-1856) независимо друг от друга построили геометрию, использовавшую постулат, согласно которому через точку, лежащую вне прямой, можно провести много прямых, ей параллельных. В 1854 Б.Риман (1826-1866) сформулировал постулат, согласно которому через точку вне прямой невозможно провести ни одной параллельной, что дало начало т.н. римановой геометрии. Неевклидова математика расширилась и стала включать в себя тригонометрию, аналитическую и дифференциальную геометрии, охватив не только планиметрию, но и стереометрию, а также геометрию пространств размерности больше трех (геометрию гиперпространств). Евклидова и обе неевклидовы геометрии одинаково хорошо служат для описания той ограниченной области пространства, в которой мы живем, хотя геометрия Евклида проще по форме. В то же время при переходе к римановой геометрии некоторые современные физические теории существенно упрощаются. ЭЛЕМЕНТАРНАЯ ПЛАНИМЕТРИЯ Аксиомы и постулаты. Существует набор исходных посылок, называемых аксиомами и постулатами, на которых базируется вся структура геометрии. Аксиомы. Аксиомы - это утверждения, принимаемые за истинные без доказательств. Аксиомы обычно подразделяются на две группы: общие, относящиеся ко всей математике, и геометрические. К числу общих аксиом относятся следующие. 1. Равные одному и тому же равны между собой. 2. Если к равным прибавляются равные, то суммы будут равны. 3. Если от равных отнимаются равные, то остатки будут равны. 4. Если равные умножить на равные, то произведения будут равны. 5. Если равные разделить на равные, то частные будут равны. Деление на нуль запрещается. 6. Одинаковые степени равных, а также корни одинаковой степени из равных равны. 7. Целое больше любой своей части. 8. Целое равно сумме своих частей. К числу геометрических аксиом относятся следующие. 1. Через любые две данные точки можно провести только одну прямую. 2. Геометрическую фигуру можно перемещать в пространстве, не изменяя ни ее размеров, ни ее формы. 3. Геометрические фигуры, которые совпадают после наложения, конгруэнтны (т.е. равны). 4. Прямая есть кратчайшее расстояние между двумя точками. Постулаты. Следующие постулаты касаются построений и принимаются за истинные без доказательств. 1. Через любые две данные точки можно провести прямую. 2. Прямая может быть продолжена бесконечно или же ограничена в любой своей точке. 3. Окружность может быть описана вокруг любой данной точки как центра и с любым радиусом. 4. Все прямые углы равны. 5. Через точку, не лежащую на прямой, можно провести одну и только одну прямую, ей параллельную. Некоторые геометрические фигуры, построения и заключения. Многие термины, используемые для описания фигур в геометрии, настолько фундаментальны, что определить их не представляется возможным. Все попытки сделать это приводили лишь к замене одних терминов другими, столь же неопределимыми, или к простому описанию некоторых свойств фигур. Например, термин "точка" не поддается определению. Линии. Термин "линия" (или "кривая" в широком смысле слова) не имеет определения, хотя мысленно линию можно представить как след движущейся точки. Бесчисленные попытки определить прямую линию (рис. 1,а) не имели успеха. Многие из этих попыток апеллировали к физическому эксперименту, например, "прямая - это туго натянутая линия". Чаще других приводится описание прямой, предложенное Архимедом: "Прямая - это кратчайшее расстояние между двумя точками". Это "определение", однако, лишь заменяет неопределяемое понятие прямизны столь же неопределяемым понятием расстояния. Предполагается, что прямая бесконечна, т.е. ее можно неограниченно продолжить в обе стороны. Часть прямой называется отрезком. Ломаная (рис. 1,б) состоит из прямолинейных отрезков. Кривой (рис. 1,в) называется линия, никакая часть которой не является прямой. гладкая кривая; г - параллельные прямые; д - перпендикулярные прямые; е - наклонные прямые. Как показано на рис. 1,г, 1,д и 1,е, прямые могут быть параллельными, перпендикулярными и наклонными. Параллельные прямые - это прямые, расстояние между которыми всюду одинаково. На рис. 1,г показано, как построить прямую, параллельную данной прямой L и отстоящую от нее на заданное расстояние. Берется окружность, радиус которой равен данному расстоянию. Проводятся две дуги с центрами в двух различных точках прямой L. Прямая, касательная к обеим дугам, и есть та прямая, которую требовалось построить. На рис. 1,д показано, как построить прямую, проходящую через точку Р и перпендикулярную прямой L. Порядок, в котором делаются засечки дугами, указаны номерами . Для проведения дуг 2 и 2' циркуль устанавливается в точки пересечения прямой L дугами 1 и 1' соответственно, радиусы остаются те же самые. Прямая, проходящая через точку Р и точку пересечения дуг 2 и 2', есть искомый перпендикуляр. Перпендикуляр - это кратчайшая линия, которую можно провести от точки до прямой, на которую он опущен, и расстояние от точки до прямой по определению равно длине перпендикуляра, опущенного из нее на прямую. Углы. Углом называется фигура, образованная двумя полупрямыми, исходящими из одной точки. Эта точка называется вершиной угла, а полупрямые - сторонами угла. Если стороны угла перпендикулярны друг другу, то образуемый ими угол называется прямым (рис. 2,а). Углы меньше прямого называются острыми (рис. 2,б), а углы больше прямого - тупыми (рис. 2,в). Развернутым называется угол, обе стороны которого лежат на одной прямой (рис. 2,г); такой угол равен двум прямым углам. Биссектрисой угла называется прямая, проходящая через его вершину и делящая угол пополам. Углы можно измерять количественно, если определить единицу измерения угла (угол в один градус) как 1/180 развернутого угла. Таким образом, прямой угол содержит 90°, а угол на рис. 2,д содержит больше 180°, но меньше 360°. - тупой угол; г - развернутый угол; д - угол, больший 180° и меньший 360°; е - вертикальные углы; ж - дополнительные углы (до 90°); з - смежные углы (до 180°); и - углы, образованные при пересечении параллельных прямой; к - деление угла пополам; л - удвоение угла; м - вычерчивание параллельных с помощью треугольника и рейсшины; н - трисекция угла по Архимеду. На рис. 2,е, 2,ж, 2,з и 2,и показано, как соотносятся между собой углы некоторых фигур. Два угла называются вертикальными, если стороны одного угла являются дополнительными полупрямыми сторон другого (рис. 2,е). Вертикальные углы равны. Дополнительные углы в сумме составляют 90° (рис. 2,ж), а смежные углы в сумме дают 180° (рис. 2,з). Если прямая пересекает две параллельные прямые, как на рис. 2,и, то углы E, B, C и H равны, и углы F, A, D и G также равны между собой. Углы между параллельными (углы А, В, С, D на рисунке) называются внутренними, а углы, лежащие вне параллельных - внешними. Тот факт, что параллельные образуют с пересекающей их прямой равные углы, используется при вычерчивании параллельных прямых (рис. 2,м). На рис. 2,к показано, как с помощью циркуля и линейки разделить пополам данный угол: прямая VA - биссектриса угла. На рис. 2,л показано, как удвоить данный угол. Традиционно в элементарной геометрии выполнялись лишь геометрические построения, которые можно осуществить, используя только циркуль и линейку без делений. Общего подхода к таким построениям не существует, и успех почти целиком зависит от настойчивости и изобретательности. Так, например, может показаться, что задача о разделении угла на три равные части, т.н. трисекция угла, достаточно легка, поскольку сходная с ней задача деления угла пополам решается довольно просто. Однако на протяжении веков все усилия как любителей, так и профессионалов осуществить трисекцию угла неизменно оканчивались неудачей. Правда, эту задачу удалось решить, используя некоторые плоские кривые высших порядков, например, конхоиду и квадратриссу, а Архимед показал, как можно было бы решить задачу о трисекции угла с помощью линейки с двумя отметинами (рис. 2,н). В предложенном им решении задачи на ребре линейки откладывается расстояние МР, равное радиусу ON. Линейка кладется так, чтобы ее край проходил через точку N, тогда точка М попадает на продолжение прямой OL, а точка P - на окружность. Задача о трисекции угла эквивалентна поиску геометрического построения, позволяющего находить корни уравнения x3 - 2 = 0. В 1837 вопрос о трисекции был окончательно решен французским математиком П.Ванцелем, давшим строгое доказательство невозможности точной трисекции угла в общем случае с помощью циркуля и линейки. Треугольники. Треугольником называется плоская фигура, ограниченная тремя прямыми. У треугольника могут быть три неравные стороны (разносторонний треугольник), две равные стороны (равнобедренный треугольник) или три равные стороны (равносторонний треугольник) (рис. 3,а, 3,б, 3,в). В равнобедренном треугольнике углы, лежащие против равных сторон (углы a и b на рис. 3,б), равны; в равностороннем треугольнике все углы равны. равнобедренный; в - равносторонний; г - прямоугольный; д - длины сторон и отрезков в прямоугольном треугольнике; е - углы треугольника; ж - медианы; з - высоты; и - биссектрисы углов; к - треугольник, рассеченный прямой, параллельной одной из сторон; л - треугольник, рассеченный биссектрисой одного из углов; м - подобные треугольники; н - пропорциональный делитель. Прямоугольным называется треугольник (рис. 3,г), у которого один из углов прямой. Сторона, лежащая против прямого угла, называется гипотенузой; две стороны, образующие прямой угол, называются катетами. Некоторые соотношения между длинами сторон прямоугольного треугольника мы приведем в обозначениях, указанных на рис. 3,д. Знаменитая теорема Пифагора гласит; квадрат длины гипотенузы в прямоугольном треугольнике равен сумме квадратов длин катетов, или c2 = a2 + b2. Длина перпендикуляра h, опущенного из вершины прямого угла на гипотенузу, есть среднее пропорциональное длин отрезков, на которые основание перпендикуляра делит гипотенузу: Углы внутри треугольника называются внутренними; углы, которые образуются, если стороны треугольника продлить за их вершины, называются внешними (рис. 3,е). Сумма внутренних углов треугольника равна развернутому углу. Любой внешний угол равен сумме двух внутренних углов, не имеющих с ним общей вершины (РD = РA + РB). Отрезок прямой, соединяющий вершину треугольника с серединой противолежащей стороны, называется медианой. Три медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Например, на рис. 3,ж отрезок АО составляет 2/3 от длины отрезка АС. Точка пересечения медиан является также центром тяжести треугольника (треугольник, вырезанный из однородного по толщине и плотности материала и подвешенный в этой точке, будет находиться в равновесии). Высотой треугольника называется перпендикуляр, опущенный из одной из его вершин на противоположную сторону (или ее продолжение). Все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром (рис. 3,з); биссектрисы всех углов треугольника также пересекаются в одной точке, которая является центром вписанной окружности (рис. 3,и) и равноудалена от всех сторон треугольника. Прямая, пересекающая треугольник и параллельная одной из его сторон, делит две другие стороны на пропорциональные отрезки. На рис. 3,к a/b = e/c = f/d. Биссектриса любого угла треугольника делит противоположную сторону на отрезки, пропорциональные длинам сторон, образующих угол. На рис. 3,л, если РA = РB, то c/a = d/b. Два треугольника (любые фигуры) называются равными (или конгруэнтными), если они переводятся друг в друга преобразованиями движения. Преобразование одной фигуры в другую называется движением, если оно сохраняет расстояния между точками. Можно доказать три признака равенства треугольников: два треугольника равны, если 1) две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника; 2) сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ним углам другого треугольника; и 3) три стороны одного треугольника равны соответственно трем сторонам другого треугольника. Если треугольники можно перевести друг в друга преобразованием движения, не выводящим их из плоскости, в которой оба они лежат, то они называются собственно конгруэнтными; если же один из треугольников необходимо перевернуть, то треугольники называются несобственно конгруэнтными. Преобразование одной фигуры в другую называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз. Две фигуры подобны, если они переводятся друг в друга преобразованием подобия. Если два треугольника подобны (рис. 3,м), то их углы равны, а соответствующие стороны пропорциональны. Пропорциональным делителем, изображенным на рис. 3,н, пользуются для того, чтобы увеличить или уменьшить чертеж в требуемое число раз. Площадь любого треугольника равна половине произведения его стороны на проведенную в ней высоту: Если треугольник равносторонний, то его площадь равна треугольника, то его площадь определяется по формуле вывод которой приписывают Герону (s - полупериметр). Четырехугольники. Четырехугольником является всякая плоская фигура, ограниченная четырьмя прямыми (рис. 4). Параллелограммом называется четырехугольник, у которого противоположные стороны имеют равную длину. Ромб (рис. 4,г) - это параллелограмм, все стороны которого равны, а прямоугольник (рис. 4,д) - это параллелограмм, у которого все углы прямые. Диагонали параллелограмма (рис. 4,ж) в точке пересечения делятся пополам; в прямоугольнике диагонали равны. Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие - непараллельны. Параллельные стороны называются основаниями. Площадь трапеции равна произведению высоты на полусумму ее оснований: A = h . Площадь параллелограмма A = bh. Один из методов определения площади четырехугольника состоит в разбиении фигуры на два треугольника с помощью диагонали и в вычислении суммы площадей образовавшихся треугольников. которого никакие стороны не параллельны; б - трапеция; в - параллелограмм; г - ромб; д - прямоугольник; е - квадрат; ж - диагонали параллелограмма; з - пантограф. Интересным приложением свойств параллелограмма служит шарнирный пантограф (рис. 4,з), используемый для перечерчивания чертежей и других графических изображений в большем или меньшем масштабе. Пантограф представляет собой шарнирный механизм, имеющий форму параллелограмма, закрепленный в вершине А, со звеном DC, продленным до точки Р. Прямая РА пересекает звено СВ в точке Р'. Звено СВ всегда параллельно звену DA, следовательно, треугольники PDA и PCP' подобны. Поэтому CP' = DAЧPC/PD, а эта величина постоянна, поэтому точка Р' звена СВ также лежит на прямой, соединяющей точки Р и А. Из двух рассмотренных выше подобных треугольников следует, что отношение РА/Р'А также постоянно. Следовательно, в любом положении пантографа перемещение точки Р' пропорционально перемещению точки Р. Если точка Р движется по контуру какой-либо фигуры, то точка Р', в которой находится острие карандаша, повторяет без искажений этот контур в уменьшенном масштабе. Отношение масштабов оригинала и копии равно РА/Р'А = PD/CD. Многоугольники. Многоугольником называется плоская фигура, ограниченная замкнутой ломаной линией, звенья которой называются сторонами. Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону. Выпуклый многоугольник называется правильным, если все стороны и углы его равны. Расстояние от центра правильного многоугольника до какой-либо его стороны равно радиусу вписанной в него окружности (обозначен на рис. 5,а буквой а). Площадь правильного многоугольника равна произведению половины радиуса на периметр: пятиугольник; б - правильный шестиугольник; в - неправильный семиугольник; г - вогнутый многоугольник. В табл. 1 приведены названия и формулы для площадей некоторых правильных многоугольников (s означает длину стороны). МНОГОУГОЛЬНИКОВ Древние греки научились строить правильные многоугольники с 3, 4, 5, 6, 8, 10 и 15 сторонами. И сами греки, и многие после них безуспешно пытались разработать методы построения других многоугольников. В 1796 К.Гаусс, которому тогда было всего 19 лет, обнаружил, что правильный многоугольник можно построить с помощью циркуля и линейки только в том случае, если число сторон n равно простому числу вида или произведению простых чисел такого вида. В этой формуле t - любое целое число. Таким образом, построение с помощью циркуля и линейки правильных 7-, 9-, 11- и 13- угольников невозможно. Гаусс построил правильный 17-угольник, и из его работы следовало, что могут быть построены правильные 257-угольник и 65537-угольник. Окружность. Окружностью называется замкнутая плоская кривая, все точки которой одинаково удалены от данной точки, называемой центром и лежащей в той же плоскости, что и кривая. Через три точки, не лежащие на одной прямой, можно провести только одну окружность. Часть плоскости, ограниченная окружностью, называется кругом. Различные термины, используемые при изучении окружности, представлены на рис. 6,а и 6,б. - концентрические окружности; г - вписанные углы. Концентрическими называются окружности, имеющие общий центр (рис. 6,в). Угол называется центральным углом окружности, если его вершина совпадает с центром окружности, а стороны - с ее радиусами. Например, угол АОВ на рис. 6,в - центральный угол обеих концентрических окружностей. Окружность делится на 360 равных долей, и число градусов в центральном угле, опирающемся на дугу окружности, равно числу 1/360 долей окружности, укладывающихся в этой дуге. На рис. 6,г А - центральный угол, а В - вписанный угол (т.е. угол, вершина которого лежит на окружности), опирающийся на ту же дугу окружности, что и центральный угол А. Согласно одной из теорем геометрии вписанный угол измеряется половиной дуги, на которую он опирается. Например, Следовательно, вписанный угол С, опирающийся на половину окружности, - прямой. Площадь круга равна четверти произведения длины его окружности на диаметр. Отношение длины окружности к диаметру приближенно равно 3,14159265 (Пи); площадь круга можно также записать в виде A = p r2, где r - радиус. История точного определения числа p (читается "пи") очень интересна сама по себе. В 1882 немецкий математик Ф.Линдеман (1852-1939) доказал, что древняя проблема квадратуры круга, геометрически эквивалентная построению отрезка неразрешима, так как число p не удовлетворяет никакому алгебраическому уравнению с целыми коэффициентами. Примеры элементарных геометрических доказательств. Утверждения элементарной геометрии распадаются на две группы: на теоремы, в которых доказательство утверждения предъявляется в явном виде, и задачи, в которых излагается способ построения, а затем проверяется его правильность. В качестве примера теоремы рассмотрим следующее доказательство. Утверждение: в равнобедренном треугольнике углы, лежащие против равных стороны, равны. Дано: треугольник АВС с равными сторонами АВ и АС. Требуется доказать: РB = РC. Рассмотрим пример задачи на построение. Задача: построить правильный шестиугольник, вписанный в окружность. Дано: Окружность с центром О. СТЕРЕОМЕТРИЯ Плоскость. Плоскость (рис. 7,а) определяется: 1) тремя точками; 2) двумя пересекающимися прямыми; 3) двумя параллельными прямыми; и 4) прямой и точкой, лежащей вне ее. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися. На рис. 7,б изображены две параллельные плоскости А и В. Если пересечь их третьей плоскостью С, то линии пересечения будут параллельны. параллельные плоскости, пересеченные третьей плоскостью; в - двугранный угол; г - трехгранный угол. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Его величина измеряется углом, полученным от пересечения этих плоскостей плоскостью, перпендикулярной к ним (рис. 7,в). Фигура, образованная тремя или более плоскостями, которые пересекаются в одной точке, называется многогранным углом (рис. 7,г). Многогранник. Это фигура, ограниченная со всех сторон плоскими многоугольниками, называемыми гранями. Многогранник называется выпуклым, если он расположен по одну сторону плоскости. Декарт и Эйлер доказали, что любой выпуклый многогранник обладает замечательным свойством, состоящим в том, что сумма числа его граней и вершин равна числу его ребер плюс два. Если все грани выпуклого многогранника - конгруэнтные правильные многоугольники, то многогранник называется правильным. Призма. Призмой (рис. 8) называется многогранник, у которого две грани лежат в параллельных плоскостях и имеют форму конгруэнтных многоугольников, а остальные грани имеют форму параллелограммов. Параллелепипед (рис. 8,в) - это призма, основаниями которой служат параллелограммы. Площадь боковой поверхности любой призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра. Объем равен произведению площади основания на высоту. наклонная призма; в - прямоугольный параллелепипед. Пирамида. Пирамидой (рис. 9) называется многогранник, основанием которого служит плоский многоугольник, а боковые грани имеют форму треугольников с общей вершиной. Площадь боковой поверхности правильной прямой пирамиды равна 1/2 произведения периметра основания на высоту боковой грани s (рис. 9). Объем любой пирамиды равен 1/3 произведения площади основания на высоту h. Цилиндр и конус. Цилиндром (или цилиндрической поверхностью) (рис. 10,а) называется поверхность, порожденная прямой Е, называемой образующей, которая движется параллельно самой себе по некоторой фиксированной кривой D, называемой директрисой. Если образующая, двигаясь по директрисе, всегда проходит через одну и ту же точку А, называемую вершиной (рис. 10,г), то получаемая в результате движения поверхность называется конусом. Призма - частный случай цилиндра, а пирамида - частный случай конуса. Формулы для площадей боковой поверхности и объемов призмы и пирамиды применимы, соответственно, к цилиндру и конусу. цилиндра; б - прямой круговой цилиндр; в - наклонный круговой цилиндр; г - образующая конуса. Сфера. Сферой называется замкнутая поверхность, все точки которой равноудалены от одной точки, называемой центром. Если плоскость пересекает сферу, то линия пересечения имеет форму окружности. Наибольшая окружность (называемая большим кругом) получается, когда секущая плоскость проходит через центр сферы. Параллели, соответствующие различным широтам, - малые круги Земли, экватор и все меридианы - большие круги. Часть пространства, ограниченная сферой и содержащая ее центр, называется шаром. Площадь поверхности сферы равна A = 4p r2, объем шара - См. также <<АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ>>; <<НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ>>; <<МНОГОГРАННИК>>. ЛИТЕРАТУРА Берже М. Геометрия, тт. 1-2. М., 1984 Погорелов А.В. Геометрия. М., 1984 Фоменко А.Т. Современная геометрия. Методы и приложения. М., 1985 Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 1986
Современная Энциклопедия
ГЕОМЕТРИЯ (от гео... и...метрия), часть математики, изучающая пространственные формы (например, фигуры и тела), их отношения (например, взаимное расположение) и их обобщения. Зарождение геометрии относится ко 2-му тысячелетию до нашей эры, в самостоятельную отрасль математики сформировалась в 4 - 3 вв. до нашей эры.
Орфографический словарь Лопатина
геом`етрия, геом`етрия, -и
Словарь Ожегова
ГЕОМ’ЕТРИЯ, -и, жен. Раздел математики, изучающий пространственные отношения и формы.
прил. геометрический, -ая, -ое.
Словарь Ушакова
ГЕОМ’ЕТРИЯ, геометрии, мн. нет, ·жен. (от ·греч. ge - земля и metreo - измеряю). Отдел математики, в котором изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами алгебры и анализа). Начертательная геометрия (занимающаяся решением геометрических задач в пространстве при помощи проектирования на плоскость).
Толковый словарь Ефремовой
[геометрия]
ж.
1)
а) Раздел математики, в котором изучаются пространственные отношения и формы.
б) Учебный предмет, содержащий теоретические основы данного раздела математики.
в) разг. Учебник, излагающий содержание данного учебного предмета.
2) перен. Очертание, форма, контуры чего-л.
Научнотехнический Энциклопедический Словарь
ГЕОМЕТРИЯ, раздел математики, предметом изучения которого являются пространственные отношения и формы. Для большинства людей геометрия ассоциируется только с ГЕОМЕТРИЕЙ ЕВКЛИДА, предметом которой являются плоскости и жесткие геометрические фигуры. Но на самом деле это более широкая и абстрактная дисциплина со многими подразделами. КООРДИНАТНАЯ ГЕОМЕТРИЯ (также называемая аналитической геометрией) появилась в 1637 г. Основателем ее был Рене ДЕКАРТ, который начал изучать свойства геометрических объектов средствами алгебры, что дало ему возможность исследовать более сложные кривые, чем позволяла геометрия Евклида. Начертательная, или проективная геометрия в своей простейшей форме, изучает проекции формы, что необходимо при составлении карт и рисовании перспективных изображений, а также и свойства, независимые от разного вида изменений. Эту отрасль разработал в 1822 г. Жан Виктор Понселе (1788-1867). Еще более абстрактные понятия были сформулированы в начале XIX в. создателями НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ Яношем Бойяи (1802-60) и Н. И. ЛОБАЧЕВСКИМ. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ, основанная на применении ИСЧИСЛЕНИЙ, которая изучает свойства кривых в пространстве, тоже появилась в этот период. Геометрическая аргументация стала меняться к пространству с числом измерений, большим трех. ТОПОЛОГИЯ - общая форма геометрии, изучающая свойства, независимые от каких бы то ни было непрерывных изменений формы.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: ГЕОМЕТРИЯ


будет выглядеть так: Что такое ГЕОМЕТРИЯ