Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

БЕЛКИ

Большая советская энциклопедия (БЭС)
I
Белки (Sciurus)
        род млекопитающих семейства беличьих отряда грызунов. Распространены в лесах Европы, Азии и Америки. Около 50 видов. Приспособлены к древесному образу жизни. Длина тела до 28 см. Мех обычно густой, у некоторых пушистый. Окраска варьирует от ярко-рыжей до серой и чёрной, многие виды окрашены пёстро. В СССР 2 вида: обыкновенная Б. и персидская Б. Обыкновенная Б. (S. vulgaris) распространена в лесной и лесостепной зоне на С. до лесотундры. Наиболее многочисленна в темнохвойной и лиственной тайге и в смешанных лесах. Питается семенами хвойных пород, желудями, орехами, ягодами, иногда насекомыми и яйцами птиц. На зиму делает запасы. Ведёт дневной образ жизни. Строит на деревьях из лишайников, мха, луба и веточек гнёзда (гайна) или поселяется в дуплах. Обычно 2 (иногда 3) выводка в год (по 5—10 бельчат). Численность зависит от урожая семян хвойных пород; в голодные годы предпринимают массовые перекочёвки. Один из основных объектов пушного промысла в СССР (таёжная зона Европейской части, Урала и Сибири).
         Персидская Б. (S. anomalus) встречается в лесных районах Закавказья; вследствие малочисленности и редкого грубого меха промыслового значения не имеет.
         Лит.: Огнев С. И., Звери СССР и прилежащих стран, т. 4 — Грызуны, М.—Л., 1940; Наумов С. П. и Лавров Н. П., Биология промысловых зверей и птиц СССР, М., 1948; Млекопитающие фауны СССР. М.—Л., 1963.
         0204831468.tif
        Обыкновенная белка.
II
Белки
        название горных хребтов и вершин в Сибири, главным образом на Алтае (например, Катунские Б.) и в Восточных Саянах (например, Агульские Б.) поднимающихся выше границы леса и покрытых снегом в течение всего или большей части года. Иногда подобного вида вершины и хребты носят название белогорий (например, Манское белогорье в Восточных Саянах).
III
Белки
        протеины, высокомолекулярные природные органические вещества, построенные из аминокислот (См. Аминокислоты) и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Именно Б. (ферменты и др.) осуществляют Обмен веществ и энергетические превращения, неразрывно связанные с активными биологическими функциями. Б. входят в состав сложных клеточных структур — органелл. И хотя органеллы содержат также другие вещества (Липиды, Углеводы, Нуклеиновые кислоты, неорганические компоненты), Б. особенно важны; они — основные структурообразователи и играют ведущую роль в выполнении физиологических функций. Например, благодаря соответствующей организации различного рода Б. Биологические мембраны, покрывающие клетки, активно (с затратой энергии) переносят в клетку или из клетки определённые молекулы и ионы. В частности, транспорт катионов создаёт электрическую поляризацию, необходимую для процессов возбуждения (См. Возбуждение). В двигательных аппаратах — мышечных волокнах и других — комплексы специфических Б. осуществляют сокращение, превращая химическую энергию в механическую работу. Деятельность Б. во многом связана с разными небелковыми веществами, из которых наибольшее биологическое значение имеют нуклеиновые кислоты. Однако решающим фактором молекулярных механизмов всех активных проявлений жизнедеятельности являются Б. В этом смысле подтверждено и детализировано известное положение Ф. Энгельса о Б. как основе биологической формы движения материи (см. «Анти-Дюринг», 1966, с. 78). Молекулы Б. в структурном отношении бесконечно разнообразны — жёсткость и точность уникальной организации сочетаются в них с гибкостью и пластичностью (см. ниже Структура Б.). Всё это создаёт необозримые функциональные потенции; поэтому Б. и явились тем исключительным материалом, который послужил основой возникновения жизни (См. Жизнь) на Земле. Б. — один из основных продуктов питания (См. Питание) человека и животных (см. Белковые корма), они служат источником восстановления и обновления цитоплазмы клеток, образования ферментов, гормонов и др. (см. Белковый обмен).
         Физико-химические свойства Б. Молекулы Б. имеют массу от десятков тыс. до 1 млн. и выше. Так, фермент рибонуклеаза имеет молекулярную массу 12 700, дыхательный пигмент улитки гемоцианин — 6 600 000. Элементарный состав большинства Б.: 50,6—54,5% углерода, 6,5—7,3% водорода, 21,5—23,5% кислорода, 15—17,6% азота, 0,3—2,5% серы; в состав ряда Б. входит и фосфор. Сведения о молекулярной массе и ряде свойств молекул Б. можно получить, исследуя их осаждение (седиментацию) в ультрацентрифуге, диффузию, вязкость, растворимость и светорассеяние. Все Б. с очень большой молекулярной массой построены из более мелких частиц — субъединиц. Растворимые Б. — гидрофильные Коллоиды, активно связывающие воду; их растворы обладают значительной вязкостью, низким осмотическим давлением. Молекулы Б. не проходят через полупроницаемые мембраны, обладают слабой способностью к диффузии. Б. — амфотерные Электролиты, т.к. имеют свободные карбоксильные (кислотные) и аминные (основные) группы. Изоэлектрическая точка различных Б. неодинакова: для альбумина плазмы крови она равна 4,7, для зеина кукурузы 6,2. Б. имеют электрический заряд, изменяющийся в зависимости от структуры Б. и реакции среды. В электрическом поле растворённые Б. движутся (Электрофорез), причём направление и скорость движения неодинаковы для различных Б. Растворимость Б. варьирует не меньше, чем другие их свойства. Одни Б. легко растворяются в воде, другие требуют для растворения небольших концентраций солей, третьи переходят в раствор только под воздействием сильных щелочей и т.п. Из растворов Б. неодинаково осаждаются органическими веществами (например, спиртами) или высокими концентрациями солей (высаливаются). Существенные различия в растворимости и других свойствах используются при выделении индивидуальных Б. из тех сложных систем, в которых они встречаются в природе. После очистки многие Б. способны кристаллизоваться.
         Структура Б. Белок всех организмов состоит из 20 видов аминокислот. Каждый Б. характеризуется определённым ассортиментом и количественным соотношением аминокислот. В молекулах Б. аминокислоты соединены между собой пептидными связями (—СО—NH—) в линейной последовательности (рис. 1), составляющей так называемую первичную структуру Б.
         0153224337.tif
         Аминокислотные (полипептидные) цепи, содержащие аминокислоту цистин, в местах его расположения скреплены дисульфидными связями (—S—S—). Между аминокислотами в Б., как правило, не существует иных химических связей, кроме пептидных и дисульфидных. Для каждого Б. не только состав, но и последовательность аминокислот в полипептидной цепи — первичная структура — строго индивидуальны; любое звено цепи — вполне определённая аминокислота. Все многочисленные виды Б., существующие в природе, различаются по первичной структуре; потенциально возможное их число практически неограниченно. Индивидуальная первичная структура каждого Б. сохраняется в поколениях благодаря точной передаче соответствующей наследственной информации (см. ниже Биосинтез Б.). Для анализа первичной структуры Б. разработаны специальные методы. При переваривании определёнными ферментами, например трипсином, каждый Б. даёт свой набор фрагментов (пептидов). При соответствующем их разделении на листе бумаги получается «пептидная карта», которая, подобно отпечатку пальца, характерна для данного Б. Разделение на пептиды и определение строения каждого из них в отдельности — основной путь расшифровки первичной структуры Б.
         Кроме пептидных и дисульфидных связей, в молекуле Б. есть многочисленные связи с меньшей энергией взаимодействия, имеющие большое значение для внутренней организации и функции Б. Среди этих связей наиболее существенны так называемые гидрофобные связи, создаваемые неполярными боковыми группами аминокислот. Эти группы, лишённые сродства к воде, имеют тенденцию контактировать между собой внутри молекулы Б. Кроме того, в молекуле Б. имеются водородные связи, образуемые полярными группами, например —СО—NH—, а также электростатические взаимодействия между группами, несущими электрические заряды.
         Пространственная конфигурация (конформация) полипептидной цепи Б. определяется его первичной структурой и условиями среды. При обычных условиях (температура не выше 40°С, нормальное давление и т.д.) Б. характеризуются внутримолекулярной упорядоченностью. «Хребет» полипептидной цепи
         0197185310.tif
         местами может закручиваться спиралью или образовывать полностью вытянутые отрезки (вторичная структура). В обоих случаях возникает система водородных связей. Но в значительной части «хребта» геометрическая регулярность может отсутствовать. Полипептидная цепь в целом «упаковывается» и жестко фиксируется с помощью взаимодействий боковых групп аминокислот (третичная структура). В зависимости от укладки полипептидных цепей форма молекул Б. варьирует от фибриллярной (вытянутой, нитеобразной) до глобулярной (округлой). Детальная конфигурация глобулярных молекул сложна и своеобразна для каждого Б. В молекуле превалирует совершенная упорядоченность, распространяющаяся на положение отдельных атомов. Однако некоторые периферические участки могут быть закреплены менее жестко, а погруженные в растворитель гидрофильные боковые группы остаются вполне гибкими. Конформация некоторых Б., например лизоцима (рис. 2), раскрыта рентгеноструктурными исследованиями. Создание упорядоченной прочной конформации Б. определяется целыми системами взаимодействий, находящихся во взаимной зависимости. Смены конформации Б., вызываемые изменениями среды или реакциями, в которые Б. вступают, связаны с изменением ряда взаимодействий. Конформационные переходы охватывают молекулу Б. целиком или ограничиваются определёнными районами. При нагревании, резком подкислении среды и других сильных воздействиях происходит «плавление» молекулы Б. — переход в состояние беспорядочного клубка. Это, как правило, влечёт за собой ряд других превращений, общий результат которых обозначают как денатурацию Б. (см. Биополимеры). При этом понижается растворимость Б., усиливается вязкость их растворов, теряются ферментативные и другие биологические свойства.
         Каждый из бесчисленного множества существующих Б. имеет особую наследственно детерминированную первичную структуру, присущую только ему. Это обусловливает строго индивидуальную систему внутримолекулярных связей, т. е. уникальную конформацию Б. Поэтому каждый Б. характеризуется собственной «химической топографией» и своеобразными сочетаниями пространственно сближенных химических групп. Часть таких сочетаний служит функциональными центрами молекул Б. Благодаря структурному соответствию, напоминающему отношение ключа к замку (комплементарности), функциональные центры «узнают» и избирательно присоединяют вещества, на которые соответствующие Б. «установлены». Функциональные — Активные центры Б.-ферментов специфически присоединяют субстраты и активируют их, ускоряя и направляя химические превращения. При помощи особых центров взаимного связывания («контактных площадок») определённые Б. соединяются по нескольку вместе (структура 4-го порядка) или создают значительно более сложные системы (самосборка крупных белковых структур). Процессы самосборки существенны для Морфогенеза.
         Изучение структуры Б. даёт возможность переходить к их синтезу. В 1955 была выяснена структура Инсулина, молекула которого состоит из двух сравнительно коротких полипептидных цепей (21 и 30 аминокислотных остатков). Вслед за этим была раскрыта первичная структура Гемоглобина, рибонуклеазы, Трипсина и ряда других Б. (рис. 3). Путём химического синтеза сначала были получены сложные пептиды со свойствами гормонов (См. Гормоны), затем удалось синтезировать гормон инсулин, наконец — фермент рибонуклеазу. Правильность химической формулы инсулина и рибонуклеазы подтвердилась тем, что синтетические Б. не отличались от Б., продуцируемых организмом, ни по физико-химическим свойствам, ни по биологической активности. Установлена полностью или частично первичная структура свыше 200 Б.
         Классификация Б. До сих пор нет единого принципа классификации Б. При делении всех известных Б. на группы учитывают и их состав (строение), физико-химические свойства (растворимость, щёлочность), происхождение и роль в организме. Б. делят на простые — протеины, состоящие только из аминокислот, и сложные — протеиды, в состав молекулы которых входят, кроме аминокислот, и другие соединения. К простым Б. относятся Альбумины, Глобулины, Гистоны, Глутелины, Проламины, Протамины и Протеиноиды. К сложным Б. относятся Гликопротеиды (содержащие, кроме аминокислот, углеводы), Липопротеиды (содержащие липиды), Нуклеопротеиды (в их состав входят и нуклеиновые кислоты), Фосфопротеиды (содержащие фосфорные кислоты) и Хромопротеиды (имеющие пигментные металлосодержащие группы).
         В. А. Белицер.
         Биосинтез Б. — процесс образования Б. из аминокислот (См. Аминокислоты) в клетках живых организмов. Выяснение механизма этого процесса, имеющего огромное биологическое значение, можно отнести к важнейшим достижениям науки 20 в. Биосинтез Б. идёт при помощи особых сложных механизмов, обеспечивающих упорядоченное воспроизведение специфических Б. уникальной структуры. Механизмы эти едины или весьма сходны для самых разнообразных клеток и организмов, в них принимают участие Нуклеиновые кислоты, в особенности рибонуклеиновые кислоты (РНК). Этот процесс идёт с использованием энергии, накопленной в виде аденозинтрифосфорной кислоты (АТФ) (см. Биоэнергетика).
         Биосинтез Б. происходит на особых рибонуклеопротеидных частицах — рибосомах (См. Рибосомы), состоящих из почти равных количеств рибосомной РНК (р-РНК) и белков. Первичная структура (последовательность аминокислот) синтезирующихся полипептидных цепочек обеспечивается соединением с рибосомами особой матричной, или информационной, рибонуклеиновой кислоты (и-РНК, или м-РНК), которая содержит информацию о специфическом строении Б., «закодированную» в виде последовательного расположения нуклеотидов, составляющих и-РНК. Эту информацию и-РНК получает от дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК), хранящей и передающей её по наследству. Аминокислоты, прежде чем попасть в рибосомы, активируются, получая энергию от АТФ и образуя соединение с адениловой кислотой. (Активированные аминокислоты представляют собой смешанный ангидрид аминокислоты и адениловой кислоты — аминоациладенилат.) Далее, остаток данной аминокислоты переносится на соответствующую транспортную рибонуклеиновую кислоту (т-РНК). Оба эти процесса катализируются одним и тем же ферментом (аминоациладенилатсинтетазой, или аминоацилт-РНК-синтетазой), специфическим для каждой аминокислоты. Определённой аминокислоте соответствуют одна или несколько специфичных для неё т-РНК. Все т-РНК сравнительно низкополимерны, содержат около 80 нуклеотидных остатков. Они построены по общему плану: в начале цепи находится 5-гуаниловая кислота, а в конце — часто обменивающаяся группировка из двух остатков цитидиловой кислоты и аденозина, к которому и присоединяется остаток аминокислоты. Остаток аминокислоты, соединённый с т-РНК, далее переносится на рибосомы, где и происходит образование полипептидной цепочки Б. (рис. 4). Т. о., рибосомная стадия — центральный этап биосинтеза Б. В процессе биосинтеза Б. рибосомы соединяются в цепочки при помощи и-РНК, образуя активные белоксинтезирующие структуры —полирибосомы, или полисомы.
         и-РНК синтезируется на матрице ДНК. В уникальной последовательности нуклеотидов ДНК линейно «записана» генетическая информация о последовательности аминокислотных остатков в полипептидных цепочках Б.
         В новообразованной и-РНК получается нуклеотидная последовательность, соответствующая матричной ДНК, — комплементарная последовательность, которая определяет первичную структуру синтезирующейся полипептидной цепочки. Включение каждой аминокислоты обусловливается (кодируется) определёнными группами из трёх нуклеотидных остатков (триплетами). Каждой аминокислоте соответствует несколько триплетов, или кодонов, для которых теперь установлены состав и последовательность нуклеотидов (см. Генетический код).
         В полисомах т-РНК, нагруженная аминокислотой, присоединяется к соответствующим кодонам и-РНК. Это присоединение совершается внутри рибосомы в силу взаимодействия комплементарных оснований: аденина с урацилом или тимином и гуанина с цитозином. При этом т-РНК присоединяется к кодону содержащимся в ней комплементарным триплетом, называемым антикодоном. По мере продвижения рибосомы по нуклеотидной цепочке и-РНК к соседним кодонам присоединяются новые молекулы т-РНК, нагруженные аминокислотами. Предыдущая т-РНК при этом освобождается, присоединяя свою аминокислоту карбоксильным концом к аминогруппе новой аминокислоты с образованием пептидной связи. Т. о., полипептидная цепочка растет по мере продвижения рибосомы по и-РНК и освобождается по завершении своего синтеза, пройдя соответствующий участок и-РНК, комплементарный данному структурному гену (Цистрону) ДНК.
         Процесс биосинтеза Б. не исчерпывается образованием полипептидных цепочек, т. е. созданием первичной структуры Б. Далее происходит свёртывание цепочек в спирали, их «укладка» и взаимодействие, и образование вторичной, третичной и, иногда, четвертичной структуры. Однако возможно, что приведённая схема не исчерпывает всех путей биосинтеза Б.
         Весьма важна проблема регуляции биосинтеза Б., определяющей включение или выключение синтеза тех или иных Б. под влиянием внутренних (в том числе дифференцировки клеток и тканей) или внешних импульсов и создающей условия для синтеза Б. в данной дифференцированной клетке.
         Теоретическая и экспериментальная разработка проблемы биосинтеза Б. имеет не только важнейшее теоретическое, но и практическое значение, поскольку, открывая подходы к воздействию на этот процесс, она намечает пути лечения ряда заболеваний, а также влияния на продуктивность многих сельскохозяйственных растений и животных.
         В связи с важным значением Б. разрабатываются новые методы получения Б. и аминокислот путём промышленного микробиологического синтеза, т. е. выращиванием микробов (например, дрожжей и др.) на дешёвом сырье (например, нефти, газе и др.).
         И. Б. Збарский.
         Лит.: Волькенштейн М. В., Молекулы и жизнь, М., 1965, гл. 3—5; Гауровиц Ф., Химия и функции белков, пер. с англ., [2 изд.], М., 1965; Биосинтез белка и нуклеиновых кислот, под ред. А. С. Спирина, М., 1965; Сисакян Н. М. и Гладилин К. Л., Биохимические аспекты синтеза белка, в кн.: Успехи биологической химии, т. 7, М., 1965, с. 3; Молекулы и клетки. [Сб. ст.], пер. с англ., М., 1966, с. 7—27, 94—106; Шамин А. Н., Развитие химии белка, М., 1966; Введение в молекулярную биологию, пер. с англ., М., 1967.
        Рис. 3. Модель молекулы миоглобина (пространственная конфигурация молекулы).
         0258984001.tif
        Рис. 2. Схема трёхмерной структуры фермента лизоцима. Кружки — аминокислоты; тяжи — пептидные связи; заштрихованные прямоугольники — дисульфидные связи. Видны спирализованные и вытянутые участки полипептидной цепи.
         0218795231.tif
        Рис. 1. Соединение аминокислот. Верхняя строка — свободные аминокислоты с боковыми группами R1, R2, R3; нижняя строка — аминокислоты соединены пептидными связями.
         0240215108.tif
        Рис. 4. Общая схема биосинтеза белков.
Современная Энциклопедия
БЕЛКИ, природные высокомолекулярные органические соединения, состоящие из остатков 20 аминокислот. В зависимости от формы молекулы различают фибриллярные (нитевидные) и глобулярные (шарообразные) белки. В состав сложных белков входят углеводы (гликопротеины), липиды (липопротеины) и другие соединения. Во всех организмах белки играют исключительно важную роль: служат структурными компонентами клеток и тканей, биокатализаторами (ферменты), гормонами, дыхательными пигментами (гемоглобины), выполняют защитную функцию (иммуноглобулины) и др. Биосинтез белков происходит на рибосомах; последовательность аминокислот в молекуле белка определяется генетическим кодом. Белок - основа кожи, шерсти, шелка и других натуральных материалов, важнейшие компоненты пищи человека и корма животных. Со 2-й половины 20 в. для получения пищевых и кормовых белков используют микробиологический синтез.
Мультимедийная энциклопедия
(протеины), класс сложных азотсодержащих соединений, наиболее характерных и важных (наряду с нуклеиновыми кислотами) компонентов живого вещества. Белки выполняют многочисленные и разнообразные функции. Большинство белков - ферменты, катализирующие химические реакции. Многие гормоны, регулирующие физиологические процессы, тоже являются белками. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы. К белкам относятся антитела, которые связывают и нейтрализуют токсичные вещества. Некоторые белки, способные реагировать на внешние воздействия (свет, запах), служат в органах чувств рецепторами, воспринимающими раздражение. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторные функции. В первой половине 19 в. многие химики, и среди них в первую очередь Ю.фон Либих, постепенно пришли к выводу, что белки представляют собой особый класс азотистых соединений. Название "протеины" (от греч. protos - первый) предложил в 1840 голландский химик Г.Мульдер. ФИЗИЧЕСКИЕ СВОЙСТВА Белки в твердом состоянии белого цвета, а в растворе бесцветны, если только они не несут какой-нибудь хромофорной (окрашенной) группы, как, например, гемоглобин. Растворимость в воде у разных белков сильно варьирует. Она изменяется также в зависимости от рН и от концентрации солей в растворе, так что можно подобрать условия, при которых один какой- нибудь белок будет избирательно осаждаться в присутствии других белков. Этот метод "высаливания" широко используется для выделения и очистки белков. Очищенный белок часто выпадает в осадок из раствора в виде кристаллов. В сравнении с другими соединениями молекулярная масса белков очень велика - от нескольких тысяч до многих миллионов дальтон. Поэтому при ультрацентрифугировании белки осаждаются, и притом с разной скоростью. Благодаря присутствию в молекулах белков положительно и отрицательно заряженных групп они движутся с разной скоростью и в электрическом поле. На этом основан электрофорез - метод, применяемый для выделения индивидуальных белков из сложных смесей. Очистку белков проводят и методом хроматографии. ХИМИЧЕСКИЕ СВОЙСТВА Строение. Белки - это полимеры, т.е. молекулы, построенные, как цепи, из повторяющихся мономерных звеньев, или субъединиц, роль которых играют у них a-аминокислоты. Общая формула аминокислот где R - атом водорода или какая-нибудь органическая группа. Белковая молекула (полипептидная цепь) может состоять всего лишь из относительно небольшого числа аминокислот или из нескольких тысяч мономерных звеньев. Соединение аминокислот в цепи возможно потому, что у каждой из них имеются две разные химические группы: обладающая основными свойствами аминогруппа, NH2, и кислотная карбоксильная группа, СООН. Обе эти группы присоединены к a-атому углерода. Карбоксильная группа одной аминокислоты может образовать амидную (пептидную) связь с аминогруппой другой аминокислоты: После того как две аминокислоты таким образом соединились, цепь может наращиваться путем добавления ко второй аминокислоте третьей и т.д. Как видно из приведенного выше уравнения, при образовании пептидной связи выделяется молекула воды. В присутствии кислот, щелочей или протеолитических ферментов реакция идет в обратном направлении: полипептидная цепь расщепляется на аминокислоты с присоединением воды. Такая реакция называется гидролизом. Гидролиз протекает спонтанно, а для соединения аминокислот в полипептидную цепь требуется энергия. Карбоксильная группа и амидная группа (или сходная с ней имидная - в случае аминокислоты пролина) имеются у всех аминокислот, различия же между аминокислотами определяются природой той группы, или "боковой цепи", которая обозначена выше буквой R. Роль боковой цепи может играть и один атом водорода, как у аминокислоты глицина, и какая-нибудь объемистая группировка, как у гистидина и триптофана. Некоторые боковые цепи в химическом смысле инертны, тогда как другие обладают заметной реакционной способностью. Синтезировать можно многие тысячи различных аминокислот, и множество различных аминокислот встречается в природе, но для синтеза белков используется только 20 видов аминокислот: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин (в белках цистеин может присутствовать в виде димера - цистина). Правда, в некоторых белках присутствуют и другие аминокислоты, помимо регулярно встречающихся двадцати, но они образуются в результате модификации какой-нибудь из двадцати перечисленных уже после того, как она включилась в белок. Оптическая активность. У всех аминокислот, за исключением глицина, к a-атому углерода присоединены четыре разные группы. С точки зрения геометрии, четыре разные группы могут быть присоединены двумя способами, и соответственно есть две возможные конфигурации, или два изомера, относящиеся друг к другу, как предмет к своему зеркальному отражению, т.е. как левая рука к правой. Одну конфигурацию называют левой, или левовращающей (L), а другую - правой, или правовращающей (D), поскольку два таких изомера различаются направлением вращения плоскости поляризованного света. В белках встречаются только L-аминокислоты (исключение составляет глицин; он может быть представлен лишь одной формой, поскольку у него две из четырех групп одинаковы), и все они обладают оптической активностью (поскольку имеется только один изомер). D- аминокислоты в природе редки; они встречаются в некоторых антибиотиках и клеточной оболочке бактерий. аминокислоты изображен здесь в виде шарика, помещенного в центр тетраэдра. Представленное расположение четырех замещающих групп соответствует L- конфигурации, характерной для всех природных аминокислот. Последовательность аминокислот. Аминокислоты в полипептидной цепи располагаются не случайным образом, а в определенном фиксированном порядке, и именно этот порядок определяет функции и свойства белка. Варьируя порядок расположения 20 видов аминокислот, можно получить огромное число разных белков, точно так же, как из букв алфавита можно составить множество разных текстов. В прошлом на определение аминокислотной последовательности какого-нибудь белка уходило нередко несколько лет. Прямое определение и теперь достаточно трудоемкое дело, хотя созданы приборы, позволяющие вести его автоматически. Обычно проще бывает определить нуклеотидную последовательность соответствующего гена и вывести из нее аминокислотную последовательность белка. К настоящему времени уже определены аминокислотные последовательности многих сотен белков. Функции расшифрованных белков, как правило, известны, и это помогает представить себе возможные функции сходных белков, образующихся, например, при злокачественных новообразованиях. Сложные белки. Белки, состоящие из одних только аминокислот, называют простыми. Часто, однако, к полипептидной цепи бывают присоединены атом металла или какое-нибудь химическое соединение, не являющееся аминокислотой. Такие белки называются сложными. Примером может служить гемоглобин: он содержит железопорфирин, который определяет его красный цвет и позволяет ему играть роль переносчика кислорода. В названиях большинства сложных белков содержится указание на природу присоединенных групп: в гликопротеинах присутствуют сахара, в липопротеинах - жиры. Если от присоединенной группы зависит каталитическая активность фермента, то ее называют простетической группой. Нередко какой- нибудь витамин играет роль простетической группы или входит в ее состав. Витамин А, например, присоединенный к одному из белков сетчатки, определяет ее чувствительность к свету. Третичная структура. Важна не столько сама аминокислотная последовательность белка (первичная структура), сколько способ ее укладки в пространстве. По всей длине полипептидной цепи ионы водорода образуют регулярные водородные связи, которые придают ей форму спирали либо слоя (вторичная структура). Из комбинации таких спиралей и слоев возникает компактная форма следующего порядка - третичная структура белка. Вокруг связей, удерживающих мономерные звенья цепи, возможны повороты на небольшие углы. Поэтому с чисто геометрической точки зрения число возможных конфигураций для любой полипептидной цепи бесконечно велико. В действительности же каждый белок существует в норме только в одной конфигурации, определяемой его аминокислотной последовательностью. Структура эта не жесткая, она как бы "дышит" - колеблется вокруг некой средней конфигурации. Цепь складывается в такую конфигурацию, при которой свободная энергия (способность производить работу) минимальна, подобно тому как отпущенная пружина сжимается лишь до состояния, соответствующего минимуму свободной энергии. Нередко одна часть цепи бывает жестко сцеплена с другой дисульфидными (-S-S-) связями между двумя остатками цистеина. Отчасти именно поэтому цистеин среди аминокислот играет особо важную роль. Сложность строения белков столь велика, что пока еще невозможно вычислить третичную структуру белка, если даже известна его аминокислотная последовательность. Но если удается получить кристаллы белка, то его третичную структуру можно определить по дифракции рентгеновских лучей. У структурных, сократительных и некоторых других белков цепи вытянуты и несколько лежащих рядом слегка свернутых цепей образуют фибриллы; фибриллы, в свою очередь, складываются в более крупные образования - волокна. Однако большинство белков в растворе имеет глобулярную форму: цепи свернуты в глобуле, как пряжа в клубке. Свободная энергия при такой конфигурации минимальна, поскольку гидрофобные ("отталкивающие воду") аминокислоты скрыты внутри глобулы, а гидрофильные ("притягивающие воду") находятся на ее поверхности. Многие белки - это комплексы из нескольких полипептидных цепей. Такое строение называется четвертичной структурой белка. Молекула гемоглобина, например, состоит из четырех субъединиц, каждая из которых представляет собой глобулярный белок. Структурные белки благодаря своей линейной конфигурации образуют волокна, у которых предел прочности на разрыв очень высок, глобулярная же конфигурация позволяет белкам вступать в специфические взаимодействия с другими соединениями. На поверхности глобулы при правильной укладке цепей возникают определенной формы полости, в которых размещены реакционноспособные химические группы. Если данный белок - фермент, то другая, обычно меньшая, молекула какого-то вещества входит в такую полость подобно тому, как ключ входит в замок; при этом меняется конфигурация электронного облака молекулы под влиянием находящихся в полости химических групп, и это вынуждает ее определенным образом реагировать. Таким способом фермент катализирует реакцию. В молекулах антител тоже имеются полости, в которых различные чужеродные вещества связываются и тем самым обезвреживаются. Модель "ключа и замка", объясняющая взаимодействие белков с другими соединениями, позволяет понять специфичность ферментов и антител, т.е. их способность реагировать только с определенными соединениями. Белки у разных видов организмов. Белки, выполняющие одну и ту же функцию у разных видов растений и животных и потому носящие одно и то же название, имеют и сходную конфигурацию. Они, однако, несколько различаются по своей аминокислотной последовательности. По мере того как виды дивергируют от общего предка, некоторые аминокислоты в определенных положениях замещаются в результате мутаций другими. Вредные мутации, являющиеся причиной наследственных болезней, выбраковываются естественным отбором, но полезные или по крайней мере нейтральные могут сохраняться. Чем ближе друг к другу два каких-нибудь биологических вида, тем меньше различий обнаруживается в их белках. Некоторые белки меняются относительно быстро, другие весьма консервативны. К последним принадлежит, например, цитохром с - дыхательный фермент, имеющийся у большинства живых организмов. У человека и шимпанзе его аминокислотные последовательности идентичны, а в цитохроме с пшеницы иными оказались лишь 38% аминокислот. Даже сравнивая человека и бактерии, сходство цитохромов с (различия затрагивают здесь 65% аминокислот) все еще можно заметить, хотя общий предок бактерии и человека жил на Земле около двух миллиардов лет назад. В наше время сравнение аминокислотных последовательностей часто используют для построения филогенетического (генеалогического) древа, отражающего эволюционные связи между разными организмами. Денатурация. Синтезированная молекула белка, складываясь, приобретает свойственную ей конфигурацию. Эта конфигурация, однако, может разрушиться при нагревании, при изменении рН, под действием органических растворителей и даже при простом взбалтывании раствора до появления на его поверхности пузырьков. Измененный таким образом белок называют денатурированным; он утрачивает свою биологическую активность и обычно становится нерастворимым. Хорошо знакомые всем примеры денатурированного белка - вареные яйца или взбитые сливки. Небольшие белки, содержащие всего лишь около сотни аминокислот, способны ренатурировать, т.е. вновь приобретать исходную конфигурацию. Но большинство белков превращается при этом просто в массу спутанных полипептидных цепей и прежнюю конфигурацию не восстанавливает. Одна из главных трудностей при выделении активных белков связана с их крайней чувствительностью к денатурации. Полезное применение это свойство белков находит при консервировании пищевых продуктов: высокая температура необратимо денатурирует ферменты микроорганизмов, и микроорганизмы погибают. СИНТЕЗ БЕЛКОВ Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, которая бы определяла, какие именно аминокислоты следует соединять. Поскольку в организме имеются тысячи видов белков и каждый из них состоит в среднем из нескольких сотен аминокислот, необходимая информация должна быть поистине огромной. Хранится она (подобно тому, как хранится запись на магнитной ленте) в молекулах нуклеиновых кислот, из которых состоят гены. См. также <<НАСЛЕДСТВЕННОСТЬ>>; <<НУКЛЕИНОВЫЕ КИСЛОТЫ>>. Активация ферментов. Синтезированная из аминокислот полипептидная цепь - это далеко не всегда белок в его окончательной форме. Многие ферменты синтезируются сначала в виде неактивных предшественников и переходят в активную форму лишь после того, как другой фермент удалит на одном из концов цепи несколько аминокислот. В такой неактивной форме синтезируются некоторые из пищеварительных ферментов, например трипсин; эти ферменты активируются в пищеварительном тракте в результате удаления концевого фрагмента цепи. Гормон инсулин, молекула которого в активной форме состоит из двух коротких цепей, синтезируется в виде одной цепи, т.н. проинсулина. Затем средняя часть этой цепи удаляется, а оставшиеся фрагменты связываются друг с другом, образуя активную молекулу гормона. Сложные белки образуются лишь после того, как к белку будет присоединена определенная химическая группа, а для этого присоединения часто тоже требуется фермент. Метаболический кругооборот. После скармливания животному аминокислот, меченных радиоактивными изотопами углерода, азота или водорода, метка быстро включается в его белки. Если меченые аминокислоты перестают поступать в организм, то количество метки в белках начинает снижаться. Эти эксперименты показывают, что образовавшиеся белки не сохраняются в организме до конца жизни. Все они, за немногими исключениями, находятся в динамичном состоянии, постоянно распадаются до аминокислот, а затем вновь синтезируются. Некоторые белки распадаются, когда гибнут и разрушаются клетки. Это постоянно происходит, например, с эритроцитами и клетками эпителия, выстилающего внутреннюю поверхность кишечника. Кроме того, распад и ресинтез белков протекают и в живых клетках. Как ни странно, о распаде белков известно меньше, чем об их синтезе. Ясно, однако, что в распаде участвуют протеолитические ферменты, сходные с теми, которые расщепляют белки до аминокислот в пищеварительном тракте. Период полураспада у разных белков различен - от нескольких часов до многих месяцев. Единственное исключение - молекулы коллагена. Однажды образовавшись, они остаются стабильными, не обновляются и не замещаются. Со временем, однако, меняются некоторые их свойства, в частности эластичность, а поскольку они не обновляются, следствием этого оказываются определенные возрастные изменения, например появление морщин на коже. Синтетические белки. Химики давно уже научились полимеризовать аминокислоты, но аминокислоты соединяются при этом неупорядоченно, так что продукты такой полимеризации мало похожи на природные. Правда, имеется возможность соединять аминокислоты в заданном порядке, что позволяет получать некоторые биологически активные белки, в частности инсулин. Процесс достаточно сложен, и таким способом удается получать лишь те белки, в молекулах которых содержится около сотни аминокислот. Предпочтительнее вместо этого синтезировать или выделить нуклеотидную последовательность гена, соответствующую желаемой аминокислотной последовательности, а затем ввести этот ген в бактерию, которая и будет вырабатывать путем репликации большое количество нужного продукта. У этого метода, впрочем, тоже есть свои недостатки. См. также <<ГЕННАЯ ИНЖЕНЕРИЯ>>. БЕЛКИ И ПИТАНИЕ Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же время и сами аминокислоты подвержены распаду, так что они реутилизируются не полностью. Ясно также, что в период роста, при беременности и заживлении ран синтез белков должен превышать распад. Некоторые же белки организм непрерывно теряет; это белки волос, ногтей и поверхностного слоя кожи. Поэтому для синтеза белков каждый организм должен получать аминокислоты с пищей. Источники аминокислот. Зеленые растения синтезируют из СО2, воды и аммиака или нитратов все 20 аминокислот, встречающихся в белках. Многие бактерии тоже способны синтезировать аминокислоты при наличии сахара (или какого-нибудь его эквивалента) и фиксированного азота, но и сахар, в конечном счете, поставляется зелеными растениями. У животных способность к синтезу аминокислот ограниченна; они получают аминокислоты, поедая зеленые растения или других животных. В пищеварительном тракте поглощенные белки расщепляются до аминокислот, последние всасываются, и уже из них строятся белки, характерные для данного организма. Ни один поглощенный белок не включается в структуры тела как таковой. Единственное исключение заключается в том, что у многих млекопитающих часть материнских антител может в интактном виде попасть через плаценту в кровоток плода, а через материнское молоко (особенно у жвачных) быть передано новорожденному сразу же после его появления на свет. Потребность в белках. Ясно, что для поддержания жизни организм должен получать с пищей некоторое количество белков. Однако размеры этой потребности зависят от ряда факторов. Организму необходима пища и как источник энергии (калорий), и как материал для построения его структур. На первом месте стоит потребность в энергии. Это значит, что, когда углеводов и жиров в рационе мало, пищевые белки используются не для синтеза собственных белков, а в качестве источника калорий. При длительном голодании даже собственные белки расходуются на удовлетворение энергетических нужд. Если же углеводов в рационе достаточно, то потребление белков может быть снижено. Азотистый баланс. В среднем ок. 16% всей массы белка составляет азот. Когда входившие в состав белков аминокислоты расщепляются, содержавшийся в них азот выводится из организма с мочой и (в меньшей мере) с калом в виде различных азотистых соединений. Удобно поэтому для оценки качества белкового питания использовать такой показатель, как азотистый баланс, т.е. разность (в граммах) между количеством азота, поступившего в организм, и количеством выведенного азота за сутки. При нормальном питании у взрослого эти количества равны. У растущего организма количество выведенного азота меньше количества поступившего, т.е. баланс положителен. При нехватке белков в рационе баланс отрицателен. Если калорий в рационе достаточно, но белки в нем полностью отсутствуют, организм сберегает белки. Белковый обмен при этом замедляется, и повторная утилизация аминокислот в синтезе белка идет с максимально возможной эффективностью. Однако потери неизбежны, и азотистые соединения все же выводятся с мочой и частично с калом. Количество азота, выведенного из организма за сутки при белковом голодании, может служить мерой суточной нехватки белка. Естественно предположить, что, введя в рацион количество белка, эквивалентное этому дефициту, можно восстановить азотистый баланс. Однако это не так. Получив такое количество белка, организм начинает использовать аминокислоты менее эффективно, так что для восстановления азотистого баланса требуется некоторое дополнительное количество белка. Если количество белка в рационе превышает необходимое для поддержания азотистого баланса, то вреда от этого, по-видимому, нет. Избыток аминокислот просто используется как источник энергии. В качестве особенно яркого примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса. В большинстве случаев, однако, использование белка в качестве источника энергии невыгодно, поскольку из определенного количества углеводов можно получить намного больше калорий, чем из такого же количества белка. В бедных странах население получает необходимые калории за счет углеводов и потребляет минимальное количество белка. Если необходимое число калорий организм получает в форме небелковых продуктов, то минимальное количество белка, обеспечивающее поддержание азотистого баланса, составляет для взрослого человека ок. 30 г в день. Примерно столько белка содержится в четырех ломтиках хлеба или 0,5 л молока. Оптимальным считают обычно несколько большее количество; рекомендуется от 50 до 70 г. Незаменимые аминокислоты. До сих пор белок рассматривался как нечто целое. Между тем для того, чтобы мог идти синтез белка, в организме должны присутствовать все необходимые аминокислоты. Некоторые из аминокислот организм животного сам способен синтезировать. Их называют заменимыми, поскольку они не обязательно должны присутствовать в рационе, - важно лишь, чтобы в целом поступление белка как источника азота было достаточным; тогда при нехватке заменимых аминокислот организм может синтезировать их за счет тех, что присутствуют в избытке. Остальные, "незаменимые", аминокислоты не могут быть синтезированы и должны поступать в организм с пищей. Для человека незаменимыми являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, гистидин, лизин и аргинин. (Хотя аргинин и может синтезироваться в организме, его относят к незаменимым аминокислотам, поскольку у новорожденных и растущих детей он образуется в недостаточном количестве. С другой стороны, для человека зрелого возраста поступление некоторых из этих аминокислот с пищей может стать необязательным.) Этот список незаменимых аминокислот приблизительно одинаков также и у других позвоночных и даже у насекомых. Питательную ценность белков обычно определяют, скармливая их растущим крысам и следя за прибавкой веса животных. Питательная ценность белков. Питательную ценность белка определяют по той незаменимой аминокислоте, которой более всего не хватает. Проиллюстрируем это на примере. В белках нашего тела содержится в среднем ок. 2% триптофана (по весу). Допустим, что в рацион входит 10 г белка, содержащего 1% триптофана, и что других незаменимых аминокислот в нем достаточно. В нашем случае 10 г этого неполноценного белка по сути эквивалентны 5 г полноценного; остальные 5 г могут послужить только источником энергии. Отметим, что, поскольку аминокислоты в организме практически не запасаются, а для того чтобы мог идти синтез белка, должны одновременно присутствовать все аминокислоты, эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно. Усредненный состав большей части животных белков близок к усредненному составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко и сыр. Однако есть белки, например желатин (продукт денатурации коллагена), которые содержат очень мало незаменимых аминокислот. Растительные белки, хотя они в этом смысле и лучше желатина, тоже бедны незаменимыми аминокислотами; особенно мало в них лизина и триптофана. Тем не менее и чисто вегетарианскую диету вовсе нельзя считать вредной, если только при этом потребляется несколько большее количество растительных белков, достаточное для того, чтобы обеспечить организм незаменимыми аминокислотами. Больше всего белка содержится у растений в семенах, особенно в семенах пшеницы и различных бобовых культур. Богаты белком также и молодые побеги, например у спаржи. Синтетические белки в рационе. Добавляя небольшие количества синтетических незаменимых аминокислот или богатых ими белков к неполноценным белкам, например к белкам кукурузы, можно значительно повысить питательную ценность последних, т.е. тем самым как бы увеличить количество потребляемого белка. Другая возможность состоит в выращивании бактерий или дрожжей на углеводородах нефти с добавлением нитратов или аммиака в качестве источника азота. Полученный таким путем микробный белок может служить кормом для домашней птицы или скота, а может и непосредственно потребляться человеком. Третий, широко применяющийся, метод использует особенности физиологии жвачных животных. У жвачных в начальном отделе желудка, т.н. рубце, обитают особые формы бактерий и простейших, которые превращают неполноценные растительные белки в более полноценные микробные белки, а эти, в свою очередь, - после переваривания и всасывания - превращаются в животные белки. К корму скота можно добавить мочевину - дешевое синтетическое азотсодержащее соединение. Обитающие в рубце микроорганизмы используют азот мочевины для превращения углеводов (которых в корме значительно больше) в белок. Около трети всего азота в корме скота может поступать в виде мочевины, что по сути и означает в определенной мере химический синтез белка. В США этот метод играет важную роль как один из способов получения белка. ЛИТЕРАТУРА Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека, тт. 1-2. М., 1993 Албертс Б., Брей Д., Льюс Дж. и др. Молекулярная биология клетки, тт. 1-3. М., 1994
Энциклопедия Отечеcтво
БЕЛКИ (белок), вершины гор Южной Сибири, покрытые снегом в течение всего лета или его большей части (например, Агульские белки).
Медицинская энциклопедия
I
Белки (протеины)
органические соединения, структурной основой которых служит полипептидная цепь, состоящая из аминокислотных остатков, соединенных пептидными связями (—СО—NH2—) в определенной последовательности. Белки являются главными компонентами всех организмов, обеспечивающими выполнение важнейших процессов жизнедеятельности. В основном все Б. построены из 20 стандартных аминокислот (<<Аминокислоты>>) и отличаются друг от друга лишь последовательностью соединения аминокислотных звеньев, что допускает, однако, возможность существования огромного множества разнообразных белков. Полипептидная цепь всех Б. на одном конце имеет NH2-группу (N-конец), а на другом — СООН-группу (С-конец). Молекулы некоторых белков состоят из нескольких полипептидных цепей.
Так называемые сложные белки помимо аминокислот содержат простетическую группу, необходимую для выполнения белком его биологической функции. В зависимости от химической природы простетических групп различают несколько классов сложных белков (табл.). Ковалентные взаимодействия между аминокислотными остатками в полипептидной цепи и между белковой частью молекулы и простетической группой сложного Б. определяют так называемую первичную структуру белка, от которой зависят все его свойства. Первичная структура каждого белка закодирована в геноме (см. <<Ген>>). Замена хотя бы одной аминокислоты в полипептидной цепи в результате генетической мутации или по другой причине может существенно изменить функциональные свойства Б. В ряде случаев такая замена может привести к развитию «молекулярного» заболевания. Так, серповидно-клеточная анемия (см. <<Анемии>>) развивается в результате генетически детерминированной замены остатка глутаминовой кислоты в 6-м положении ?-цепи гемоглобина на остаток валина.
Таблица
Сложные белки и химическая природа их простетических групп

--------------------------------------------------------------------------------------------------------------------------------------------
| Класс сложных           | Простетическая группа                  | Характерные представители   |
| белков                        |                                                      |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Липопротеины            | Липиды                                         | ?1-Липопротеин крови             |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Гликопротеины           | Углеводы                                      | ?-Глобулин крови                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Фосфопротеины         | Фосфатные группы                        | Казеин молока                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Гемопротеины            | Гем (комплексное соединение       | Гемоглобин, цитохромы          |
|                                   | железа с протопорфирином)          |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Флавопротеины          | Флавиновые нуклеотиды               | Сукцинатдегидрогеназа          |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Металлопротеи-ны      | Металлы: Fe, Zn и др.                   | Ферритин,                               |
|                                   |                                                      | алкогольдегидрогеназа           |
--------------------------------------------------------------------------------------------------------------------------------------------

Полипептидные цепи Б. свертываются в пространстве определенным образом, вследствие чего возникает характерная для данного типа Б. так называемая вторичная структура. Теоретически полипептидные цепи в пространстве могут образовывать бесконечное число структур, однако в нормальных условиях каждый белок, как правило, принимает единственную, специфическую для этого белка конформацию, определяемую и поддерживаемую боковыми группами атомов, а также жесткостью и трансконфигурацией пептидных связей. Основными устойчивыми и упорядоченными конформациями полипептидных цепей являются правая ?-спираль и ?-структура. В ?-спирали полипептидный остов формирует плотные витки с шагом длиной в 3,6 аминокислотных остатка (около 0,54 нм) вокруг длинной оси молекулы, а боковые группы атомов аминокислот выступают наружу. Витки этой спирали стабилизируются водородными связями, образуемыми атомами водорода у пептидного азота и противостоящими электроотрицательными атомами кислорода карбонильных (СО—) групп. ?-Спираль — простейшая форма организации полипептидной цепи, образуется всегда, когда тому нет препятствий. Препятствуют формированию ?-спирали участки полипептидной цепи, содержащие большое количество близко расположенных друг к другу остатков глутаминовой кислоты лизина или аргинина, имеющих заряженные боковые группы атомов, склонные к взаимному отталкиванию. Мешают ?-спирализации также соседствующие аминокислоты с громоздкими боковыми группировками (аспарагин, греонин, лейцин), а также пролин, в молекуле которого атом азота входит в состав гетероциклической группировки и не связан с водородом. Молекула тропоколлагена (субъединицы коллагена) состоит из трех сплетенных полипептидных цепей. Тройная спираль тропоколлагена стабилизируется поперечными водородными и ковалентными связями, образуемыми остатками лизина соседних полипептидных цепей. Расположенные рядом тройные спирали соединены между собой поперечными связями. Коллагеновая спираль уникальна и не встречается ни в каких других белках. Особого типа спираль обнаружена также в молекуле белка тропоэластина. Эта спираль обладает удивительным свойством растягиваться при натяжении и возвращаться к исходной длине при снятии нагрузки.
В случае ?-конформации остов полипептидной цепи имеет не спиральную, а плоскую зигзагообразную структуру, внутри которой водородные связи отсутствуют. Такие ?-структуры образуются только тогда, когда в составе полипептидной цепи оказываются аминокислоты с небольшими боковыми группировками (глицин, аланин), расположенные в определенной последовательности. ?-Конформация характерна для молекул ?-кератина, фиброина шелка и др. Белки, у которых вторичная структура представляет собой конечную ступень организации молекулы (так называемые фибриллярные белки), имеют нитевидную форму и нерастворимы в воде. Помимо фибриллярных существует большая группа глобулярных Б., у которых полипептидные цепи свернуты в плотную компактную сферу, или глобулу, определяющую третичную структуру Б. Гидрофобные группировки глобулярных Б., как правило, оказываются внутри глобулы, что обеспечивает растворимость таких Б в воде. Свертывание полипептидных цепей и образование петель происходит из-за наличия в цепях деспирализованных участков, состоящих из аминокислот, не допускающих образования ?-спиралей. т.е. этот процесс также предопределен первичной структурой белка. Третичная структура белковой молекулы в отличие от вторичной стабилизируется химическими связями, например дисульфидными (S—S-связями), возникающими между дальними участками полипептидной цепи. Часто эта стабилизация осуществляется благодаря взаимодействию боковых группировок соседних петель. При искусственном разрушении третичной структуры (денатурации) белок, как правило, утрачивает свою биологическую активность, однако некоторые глобулярные Б. способны претерпевать обратимые изменения своей конформации в процессе выполнения специфических функций (например, гемоглобин, ферментные Б.).
Наивысшим по сложности структурным образованием Б. является их четвертичная структура, возникающая при группировании в пределах одной молекулы нескольких полипептидных цепей (субъединиц). Б., состоящие из двух и более субъединиц, называют олигомерными. Так, например, функционально активные молекулы фермента гексокиназы состоят из 2 или 4 субъединиц, гемоглобина — из 4 субъединиц, аспартат-карбамоилтрансферазы — из 12 субъединиц.
В соответствии с биологическими функциями различают Б. структурные, сократительные и двигательные, защитные, транспортные, регуляторные, ферментные, пищевые и запасные. Структурные Б. образуют волокна, навитые друг на друга либо уложенные плоским слоем. Они выполняют опорную или защитную функцию, скрепляя биологические структуры и придавая им прочность. Наиболее важными в этой группе Б. являются фибриллярные белки <<Коллагены>>, составляющие основу хрящей, сухожилий и кожи. Волосы и ногти состоят, в основном, из нерастворимого фибриллярного белка кератина, связки содержат фибриллярный белок эластин, способный растягиваться в двух направлениях. Сократительные Б. придают клеткам и организмам способность сокращаться, изменять форму и передвигаться. Так, актин и миозин составляют основу скелетных мышц, тубулин обеспечивает подвижность ресничек и жгутиков, при помощи которых передвигаются отдельные клетки. Защитные Б. — антитела — распознают проникшие в организм чужеродные белки, вирусы, микроорганизмы и, образуя с ними комплекс антиген — антитело, нейтрализуют их. Фибриноген и тромбин — Б. свертывающей системы крови защищают организм от потери крови при повреждении сосудов. Транспортные Б. плазмы крови образуют комплексы с отдельными молекулами или ионами и разносят их по организму: гемоглобин — кислород, липопротеины — липиды, альбумины — микроэлементы. витамины, гормоны. В клеточных мембранах имеются специфические белки-переносчики, транспортирующие в клетку и обратно глюкозу и разнообразные биологически активные соединения. Регуляторные Б. участвуют в регуляции клеточной или физиологической активности. Белково-пептидные гормоны, например, регулируют обмен глюкозы (инсулин), рост (соматотропный гормон, или гормон роста), транспорт ионов Са2+ и фосфатов (паратгормон) и др. Самый многообразный и специализированный класс Б. составляют <<Ферменты>>, катализирующие практически все химические реакции, протекающие в организме. К пищевым Б. относят Б., содержащие в своем составе богатый набор разнообразных аминокислот, в т.ч. незаменимых. Некоторые Б., например казеины молока и их гидролизаты, используют для парентерального питания больных.
Классифицировать Б. можно по множеству признаков, в связи с чем одни и те же белки зачастую попадают в разные классы. Как правило, Б. группируют по их физико-химическим свойствам, а также по локализации. Так, по электрофоретической подвижности, растворимости в воде и в растворах сульфата аммония (NH4)2SO4 в сыворотке крови и других биологических жидкостях различают альбумины и глобулины, в клейковине семян злаков — глютелины и проламины (глиадин, зеин, гордеин). В отдельную группу выделяют протамины, низкомолекулярные белки, обнаруживаемые в сперме животных и некоторых рыб, более чем наполовину состоящие из диаминомонокарбоновых аминокислот, а также похожие на протамины белки гистоны, находящиеся в ядрах клеток в комплексе с ДНК, Структурные фибриллярные белки коллаген, фиброин, эластин, кератин относят к классу склеропротеинов; гликопротеины, содержащие в своем составе кислые <<Гликозаминогликаны>>, иногда называют мукопротеинами (муцины и мукоиды синовиальной жидкости и слизей).
Биосинтез Б. происходит на специальных органеллах клеток — рибосомах и протекает в четыре основных этапа. Предварительно каждая из необходимых для синтеза полипептидной цепи белка аминокислота активируется в цитоплазме с помощью специфической аминоацил-тРНК — синтетазы (аминокислота-транспортная РНК — синтетазы), использующей для этого энергию АТФ (см. <<Макроэргические соединения>>). Вначале происходит инициация полипептидной цепи. При этом матричная, или информационная, РНК (мРНК), содержащая информацию о синтезируемом полипептиде, связывается с малой субчастицей рибосомы (см. <<Клетка>>), а затем с тРНК, несущей так называемую инициирующую аминокислоту, которая взаимодействует с особым кодоном (триплетом) мРНК, сигнализирующем о начале полипептидной цепи (см. <<Нуклеиновые кислоты>>). Инициирующей аминокислотой у всех эукариот (высших организмов) является метионин. В процессе инициации полипептидной цепи принимают участие гуанозинтрифосфат и три специфических белка, называемых факторами инициации (IF-1, IF-2, IF-3). На втором этапе синтеза белка — элонгации (удлинении цепи) рибосома перемещается вдоль мРНК с одного кодона на другой и полипептидная цепь удлиняется, начиная с N-конца, за счет последовательного присоединения аминокислот, доставляемых тРНК. «Рост» полипептида осуществляется при помощи находящихся в цитозоле белковых факторов элонгации — Tu, Ts, и G. После завершения синтеза полипептида, о чем сигнализирует терминирующий кодон мРНК (УАА, УАГ или УГА), происходит высвобождение полипептидной цепи из рибосомы (третий этап) при участии особых факторов — факторов терминации — R1, R2, S. На четвертом этапе биосинтеза белок претерпевает так называемую посттрансляционную модификацию, или процессинг, заключающуюся в удалении инициирующей аминокислоты, отщеплении лишних аминокислотных остатков, введении простетических и других группировок, фосфорилировании, метилировании и т.п. На этом же этапе происходит самопроизвольная структурная перестройка, в ходе которой белок принимает свою пространственную конформацию. Многие Б. содержат на N-конце полипептидной цепи сигнальную последовательность аминокислот, с помощью которой вновь синтезированный белок доходит до места своего назначения, например в цистерны эндоплазматического ретикулума, где сигнальная последовательность аминокислот отщепляется с помощью специфических пептидаз.
По своим электрохимическим свойствам Б., как и аминокислоты, являются амфолитами. Они содержат кислотные, а также основные группировки и меняют суммарный заряд в зависимости от величины рН среды. При величине рН, равной изоэлектрической точке белка, заряд белка становится равным 0, и белок теряет способность растворяться в воде. Растворимость Б. снижается или полностью утрачивается также при разрушении гидратных оболочек вокруг белковых молекул. Дегидратацию белков вызывают высокие концентрации солей одновалентных катионов, например (NH4)2SO4, и органические растворители, смешивающиеся с водой. Осаждение Б. высаливанием не приводит к их денатурации и часто используется для очистки или выделения Б. в кристаллическом виде. Нагревание растворов Б. до высокой температуры (выше 60°), а также осаждение солями тяжелых металлов и органическими кислотами — сульфосалициловой, хлорной, трихлоруксусной — вызывают коагуляцию Б. и выпадение их в виде нерастворимого осадка. Подобную обработку растворов Б., особенно их осаждение 5—10% трихлоруксусной кислотой, применяют для удаления белков из растворов и биологических жидкостей, в т.ч. с целью последующего анализа безбелковых фильтратов.
Наиболее специфичным методом анализа Б. является реакция на пептидные связи, так называемая биуретовая реакция, заключающаяся в образовании фиолетового окрашивания при инкубации пептидов или биурета (H2N—СО—NH—СО—NH2) с ионами меди в щелочной среде. Эта реакция в сочетании с реакцией Фолина на тирозин лежит в основе наиболее распространенного метода количественного определения Б., предложенного в 1951 г. Лаури (О.Н. Lowry) с соавторами. Во многих автоматических анализаторах, используемых в медицине и пищевой промышленности, содержание Б. оценивается по количеству элементарного азота, образующегося после сжигания белковых осадков (метод Кьельдаля). Для определения Б. используются также ксантопротеиновая проба — развитие желтого окрашивания при воздействии концентрированной азотной кислоты, реакция Миллона — развитие ярко-красного окрашивания при взаимодействии солей ртути и азотистой кислоты с ОН-группой тирозина белка, специфическая реакция Адамкевича на триптофан и др. В клинико-диагностических лабораториях иногда применяют качественные пробы на белок, например пробу Ривальты, заключающуюся в образовании мутного белкового осадка в растворе уксусной кислоты при величине рН ниже изоэлектрической точки белка. Проба Ривальты позволяет отличать экссудат, содержащий более 3% белка, от транссудата, а также диагностировать появление Б. в цереброспинальной жидкости. Относительное содержание альбуминов и глобулинов в сыворотке крови можно оценивать нефелометрическим методом Русняка. Метод основан на различной растворимости этих белков в 50% растворе сульфата аммония (NH4)2SO4 — глобулины в таком растворе теряют растворимость и вызывают помутнение раствора в нейтральной среде, а альбумины (вместе с глобулинами) — только в кислой. Для гистохимического анализа Б. используют реакции, в результате которых образуются нерастворимые окрашенные осадки (метод Маллори, орсеин-пикрофуксиновый метод), а также иммунологические методы с мечеными антителами.
В норме в сыворотке крови концентрация белка, определенная унифицированным в СССР биуретовым методом, составляет 65—85 г/л (6,5—8,5 г/100 мл); концентрация альбуминов в сыворотке крови (по унифицированному в СССР определению с бромкрезоловым зеленым) составляет 35—50 г/л (3,5—5,0 г/100 мл). Относительное содержание белковых фракций в сыворотке крови (при окраске бумажных электрофореграмм бромфеноловым синим, амидочерным, азокармином Б и др.) равно: альбуминов — 50—70%, ?1-глобулинов — 3—6%, ?2-глобулинов — 9—15%, ?-глобулинов — 8—18%, ?-глобулинов — 15—25%.
В цереброспинальной жидкости (ликворе) содержание белка, определенное унифицированным методом с сульфосалициловой кислотой и сульфатом натрия, составляет: в ликворе из желудочков мозга — 0,12—0,2 г/л, из большой цистерны — от 0,1 до 0,22 г/л, при люмбальной пункции — от 0,22 до 0,33 г/л. Величина альбумин-глобулинового коэффициента в ликворе колеблется в пределах 0,2—0,3.
Библиогр.: Збарский И.Б. и др. Белки, БМЭ, 3-е изд., т. 3, с. 9, М., 1976; Ленинджер А.Л. Основы биохимии пер. с англ., т. 1—3, М., 1985.
II
Белки (белок)
полимеры, состоящие из аминокислот, соединенных в определенной последовательности пептидной связью; основная и необходимая составная часть всех организмов.
Белок ацилпереносящий — Б., участвующий в биосинтезе высших жирных кислот в комплексе с трансацилазами и окислительными ферментами; представляет собой полипептид с мол. массой 10 000, ковалентно связанный через остаток серина с 4-фосфопантотеином.
Белки вирусиндуцируемые — Б., образующиеся в инфицированных вирусом клетках.
Белки вирусные неструктурные — вирусоспецифические Б., не входящие в состав вириона, но принимающие участие в репродукции вируса; образуются в инфицированных вирусом клетках.
Белки вирусные структурные — вирусоспецифические Б., входящие в состав вириона; некоторые Б. в. с. обладают ферментативной активностью.
Белки вирусоспецифические — Б., информация для синтеза которых закодирована в вирусном геноме.
Белки запасные — Б. организма, используемые им при недостаточном поступлении белков с пищей; содержатся главным образом в печени и мышцах.
Белки неусвояемые — пищевые Б., не гидролизуемые ферментами пищеварительных соков и не ассимилируемые организмом человека.
Белок общий — гигиенический показатель: содержание Б. в продукте питания, рассчитываемое по результатам определения в нем азота.
Белки пищевые — Б., входящие в состав пищевых продуктов.
Белки простые — см. <<Протеины>>.
Белки сложные — см. <<Протеиды>>.
Белок С-реактивный — бета-глобулин, обнаруживаемый в сыворотке крови при некоторых воспалительных, дистрофических и опухолевых заболеваниях.
Белки усвояемые — пищевые Б., расщепляемые ферментами пищеварительных соков до аминокислот и используемые организмом для пластических и энергетических целей.
Орфографический словарь Лопатина
белк`и, белк`и, -`ов, ед. бел`ок, белк`а (горные вершины)
Словарь Даля
мн. бельма, талы, буркала, шары, баньки, вытараски, выторочки, большие глаза. Что белки выпучил
·*сиб. белки, бельцы, белогорье, снеговые горы. Белочная пена, яичная, сбитый белок. Белковая глазная оболочка, роговая. Белковый лес, с белью. Белец муж. белица жен. живущий в монастыре, но еще не постриженный в монашество. Есть общины белиц, в общежитиях, не принимающие вовсе монашеского обета. Наши белички не велички, да круглолички.
Растение белица, Leucanthemum vulgare, поповник, из семейства ромашковых (ошибочно былица); оно же и белик муж. также белоголовник, желтушка, полевая ромашка, кутки, ромен, нивняк, иванова трава, иванов цвет; белица, судоходный конопатный топорик
Белик же растение Alisma Plantago, жабник (как зовут и лютик, Ranunculus), водяной подорожник, водяной шильник, подшильник, чистуха, пупошник, пуповик, баранья() трава.
Белик пустошный, Gnaphalium sylvaticum, золотуха.
Белик, вид белесоватого, сибирского гранита;
·*сиб. тучная новь, целина, непашь, земля под огороды. Бельцов, белицын, беличкин, им принадлежащий. Беличий, к ним относящийся, им свойственный. Беликовый жернов, из гранита белика. Белошня ·об., ·*архан., белошной, беложавый человек, ·*архан. белоручка, неженка в работе. Белковина жен. вещество яичного белка, найденное химиками и в других животных и растительных частях: в крови, в мышцах, семенах и пр. Белковинный, к ней относящийся. Белковинное начало. Белковинистое вещество, содержащее белковину или на нее похожее. Белыш, что-либо белое; шуточно, белолицый, белокурый. Два белыша ведут черныша чело печи и очелыш.
·*вологод., ·*пермяц., ·*архан. яичный белок. Белик муж., ·*архан. медвежье сало ломтем, продаваемое как лекарственная мазь. Беляк муж. чистяк, чистячок, опрятный человек, щеголек;
нерабочий, белоручка. Белячок черной работы не любит.
Беляки по ногтю (или ногти цветут) к гостинцу, к обнове.
Белая волна, пена, завой, кудри на волне, белоголовец, барашки, зайчики. По Волге беляк ходит, белячок играет, расходился.
·*астрах. рунный, стайный, гуртовой ход красной рыбы, идущей, по вскрытии реки, в устья выбивать (метать) икру. Осетрий беляк идет.
·*пермяц. белая, пепелистая, холодная почва, иловатая или известковая. По беляку сеять, беляки и будут, ·т.е. чисто, голо.
·*пенз., ·*смол. гриб белянка или подгруздок.
Растение Pyrola minor, березка;
белый трилистник, Trifolium montanum; Cytisus biflorus, ракитник, дереза, зиновник, полевой багульник, древесный зверобой, маврот, вязник, железник, ветловник, чижовник, кагальник (ошибочно чилига).
Заяц, Lepus variabilis, для отличия от русака; он летом серый, зимою белый; отличается и летом от русака меньшим весом, толстыми пазанками (лапами), рыжиною и черным хребтиком по цветку (хвосту).
·*орл. холщевой, белый кафтан, балахон, иногда с черными гарусными костылями по спине; летник, холодник, белага.
·*вологод. обувь из белой, сыромятной кожи, род поршней.
Кожевенный снаряд, для разминки белых, сыромятных кож: две стойки, на коих растягивают кожу руками, нажимая ее коленом.
Белый, избирательный шар, при баллотировке. Думали, что черняков наклали, ан все беляки. Думали, беляки - ан на вороных прокатили.
·*сиб. излишний сбор ясака с инородцев, как бы для обелки их перед местными властями. Белоша жен., ·*архан. беляк, ·в·знач. рунного, стайного хода рыбы. Белошный, беляшной, ·*архан. к белоше, беляку относящийся. Белошиться, кишеть. Белячина вкусом хуже русачины, мясо зайца беляка. Беляковый, белячный, белячий, до беляка, в разных значениях относящийся. Белячка, белоручка, нерабочая.
Толковый словарь Ефремовой
[белки]
1. мн.
Выпуклые непрозрачные оболочки глаз белого цвета.
2. мн. местн.
Горные вершины, покрытые снегом в течение всего года.
Воровской жаргон
деньги
Бренан - Словарь научной грамотности
Молекулы белков (простые белки называют протеинами) можно считать "рабочими лошадками" жизни. Одни белки действуют как ферменты, работа которых состоит в переваривании тех белков, что мы едим. Другие, такие, как гемоглобин в крови, помогают переносить кислород из легких в остальные части тела. Третьи строят соединительные и мышечные ткани организма. Белки составляют значительную часть массы живых организмов и необходимы в пище всех животных. Главная функция всех живых клеток - собирать молекулы белков в соответствии с генетическим кодом в молекулы ДНК. Белковые молекулы обычно имеют вид длинных извивающихся цепочек, составленных из 20 разных видов молекул аминокислот. Функция каждого отдельного белка зависит от определенной последовательности аминокислот, а также от их точной формы. См. <<хромосомы>>; <<ДНК>>; <<гены>>.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: БЕЛКИ


будет выглядеть так: Что такое БЕЛКИ