Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

АСТРОНОМИЯ

Большая советская энциклопедия (БЭС)
I
Астрономия (греч. astronomia, от Астро... и nomos — закон)
        наука о строении и развитии космических тел, их систем и Вселенной в целом.
         Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические туманности, межзвёздное вещество, нашу Галактику (систему Млечного Пути), другие галактики, их распределение в пространстве, движение, физическую природу, взаимодействие, происхождение и развитие. А. изучает и разрабатывает способы использования наблюдений небесных тел для практических нужд человечества. Таковы служба времени, определение географических координат и азимутов на земной поверхности, изучение фигуры Земли по наблюдениям искусственных спутников Земли, ориентация искусственных спутников и космических зондов по звёздам и т. п. А. способствует выработке правильных материалистических представлений о мироздании. А. тесно связана с другими точными науками, прежде всего — с математикой, физикой и некоторыми разделами механики, используя достижения этих наук и, в свою очередь, оказывая влияние на их развитие. В зависимости от предмета и методов исследований А. разделяется на ряд дисциплин (разделов). Астрометрия занимается построением основной инерциальной системы координат для астрономических измерений, определением положений и движений небесных объектов, изучением закономерностей вращения Земли и исчислением времени, определением значений фундаментальных астрономических постоянных; к ней относятся также Сферическая астрономия, включающая математические методы определения видимых положений и движений небесных объектов, и Практическая астрономия, посвященная теории угломерных инструментов и применению их для определения времени, географических координат (широты и долготы) и азимутов направлений. Небесная механика (теоретическая А.) изучает движения небесных тел, в том числе и искусственных (Астродинамика) под влиянием всемирного тяготения, а также фигуры равновесия небесных тел. Звёздная астрономия рассматривает систему звёзд, образующую нашу Галактику (Млечный Путь), а Внегалактическая астрономия — другие галактики и их системы. Астрофизика, включающая астрофотометрию, астроспектроскопию и другие разделы, исследует физические явления, происходящие в небесных телах, их системах и в космическом пространстве, а также химические процессы в них. Радиоастрономия изучает свойства и распределение в пространстве космических источников излучения радиоволн. Создание искусственных спутников Земли и космических зондов привело к возникновению имеющей большое будущее внеатмосферной астрономии (См. Внеатмосферная астрономия). Космогония занимается вопросами происхождения как отдельных небесных тел, так и их систем, в частности Солнечной системы, а Космология — закономерностями и строением Вселенной в целом.
         Астрономия в древности. А. возникла в глубокой древности в результате потребности людей определять время и ориентироваться при путешествиях. Уже простейшие наблюдения небесных светил невооружённым глазом позволяют определять направления как на суше, так и на море, а изучение периодических небесных явлений легло в основу измерения времени и установления системы календаря (См. Календарь), позволяющего предвидеть сезонные явления, что было важно для практической деятельности людей.
         Астрономические знания Др. Китая дошли до нас в очень неполном и часто искажённом виде. Они состояли в определении времени и положения среди звёзд точек равноденствий и солнцестояний и наклонения эклиптики к экватору. В 1 в. до н. э. уже были известны точные синодические периоды движения планет. В Индии была составлена система летосчисления, в которой большую роль играло движение Юпитера. В Др. Египте по наблюдениям звёзд определяли периоды весенних разливов Нила, обусловливавших сроки земледельческих работ; в Аравии, где из-за дневной жары многие работы совершались по ночам, существенную роль играли наблюдения фаз Луны; в Др. Греции, где было развито мореплавание и вопросы ориентирования были крайне актуальными, в особенности до изобретения компаса, получили развитие способы ориентирования по звёздам. У многих народов, в частности в странах ислама, с периодичностью небесных явлений, главным образом фазами Луны, был связан религиозный культ.
         Довольно точные астрономические наблюдения производились и передавались последующим поколениям уже в самой глубокой древности. Благодаря этому египтяне за 28 в. до н. э. определили продолжительность года в 3651/4 сут. Период чередования лунных фаз (синодический месяц) был известен с точностью до нескольких мин, о чём свидетельствует найденный в 5 в. до нашей эры Метонов цикл, в котором по истечении 19 лет фазы Луны падают на те же даты года. Период повторяемости солнечных затмений, составляющий 18 лет 10 дней и названный Саросом, был известен уже в 6 в. до нашей эры. Все эти сведения были получены на основе многовековых наблюдений небесных явлений древними народами Китая, Египта, Индии и Греции.
         Звёзды, как бы прикрепленные к небесному своду и вместе с ним совершающие суточное вращение, практически не меняя взаимного расположения, были названы неподвижными. В их неправильных группах пытались найти сходство с животными, мифологическими персонажами, предметами домашнего обихода. Так появилось деление звёздного неба на созвездия, различные у разных народов. Но, кроме таких неподвижных звёзд, уже в незапамятные времена стали известны 7 подвижных светил: Солнце, Луна и 5 планет, которым были присвоены имена римских божеств, — Меркурий, Венера, Марс, Юпитер и Сатурн. В честь Солнца, Луны и 5 планет были установлены 7 дней недели, названия которых в ряде языков до сих пор отражают это. Проследить движение по звёздному пути Луны и планет было нетрудно, т. к. они видны ночью на фоне окружающих звёзд. Установить такое движение Солнца помогли наблюдения ярких звёзд, которые появлялись перед восходом Солнца на фоне утренней зари (т. н. гелиакические восходы). Эти наблюдения в сочетании с измерением полуденной высоты Солнца над горизонтом с помощью простейших приспособлений позволили довольно точно определить путь Солнца среди звёзд и проследить его движение, совершающееся с годичным периодом по наклонному к экватору большому кругу небесной сферы, названному эклиптикой. Расположенные вдоль него созвездия получили название зодиакальных (от греч. zoon — животное), т. к. многие из них имеют имена живых существ (Овен, Телец, Рак, Лев и др.). В Др. Китае звёздное небо было подробно изучено и разделено на 122 созвездия, из них 28 зодиакальных. Составленный там список 807 звёзд на несколько столетий опередил звёздный каталог греческого учёного Гиппарха. Но у большинства народов было 12 зодиакальных созвездий, и Солнце в течение года проходило каждое созвездие примерно в течение месяца. Луна и планеты также движутся по зодиакальным созвездиям (хотя и могут отходить от эклиптики на несколько угловых градусов в обе стороны).
         В то время как движение Солнца и Луны всегда происходит в одном направлении — с запада на восток (прямое движение), движение планет гораздо сложнее и временами совершается в обратном направлении (попятное движение). Причудливое движение планет, не укладывавшееся в простую схему и не подчинявшееся элементарным правилам, казалось, говорило о существовании у них личной воли и способствовало их обожествлению древними. Это, а также такие «устрашающие» явления, как лунные и особенно солнечные затмения, появление ярких комет, вспышки новых звёзд, породили лженауку — астрологию, в которой расположения планет в созвездиях и упомянутые явления связывались с происшествиями на Земле и служили для предсказания судьбы народов или отдельных личностей. Не имея ни малейшей научной основы, астрология, используя суеверия и невежество людей, тем не менее получила распространение и надолго удержалась у многих народов. Так, многие правители, военачальники и знатные люди держали специальных астрологов, с которыми советовались при принятии важных решений. Для того чтобы по правилам астрологии составлять гороскопы, по которым производилось мнимое предсказание будущего, нужно было знать расположение зодиака относительно горизонта в данный момент, а также положения планет, что повело к усилению астрономических наблюдений, уточнению периодов движения светил и созданию первых, хотя и очень несовершенных теорий движения планет. Т. о., астрология, несмотря на всю свою абсурдность, способствовала на определённом этапе развитию науки А.
         Геоцентрическая система мира. Для усовершенствования теорий движений планет потребовалось основательное знание геометрии, разработанной в Греции (не раньше 4 в. до н. э.). В это время Евдокс Книдский, предшественник Аристотеля, создал теорию гомоцентрических сфер (дошедшую до нас лишь в пересказе Аристотеля), согласно которой планета прикреплена к поверхности полой сферы, равномерно вращающейся внутри другой сферы, тоже вращающейся вокруг оси, не совпадающей с осью вращения первой сферы. В центре этих сфер находится Земля. Для представления сложного движения некоторых планет потребовалось несколько таких концентрических сфер, общее число которых доведено учеником Евдокса Калиппом до 55. Позже, в 3 в. до н. э., греческий геометр Аполлоний Пергский упростил эту теорию, заменив вращающиеся сферы кругами, и этим положил основу теории эпициклов, получившую своё завершение в сочинении древнегреческого астронома Птолемея (2 в. н. э.), известном под названием «Альмагест». Принималось, что все небесные светила движутся по окружностям и притом равномерно. Неравномерные движения планет, изменения направления их движения объясняли, предполагая, что они одновременно участвуют в нескольких круговых равномерных движениях, происходящих в разных плоскостях и с разными скоростями. Земля, о шарообразности которой учила уже Пифагорейская школа в 6 в. до н. э., считалась покоящейся в центре Вселенной, что соответствовало непосредственному впечатлению, создаваемому видом звёздного неба; окружность земного шара измерил в 3 в. до н. э. Эратосфен в Александрии.
         Для практического применения теория эпициклов нуждалась в значениях величин, определяющих периоды обращения планет, взаимные наклоны их орбит, длины дуг попятных движений и т. п., которые можно было получить только из наблюдений, измеряя соответствующие промежутки времени и углы. Для этого были созданы различные приспособления и инструменты, сначала простейшие, такие как Гномон, а затем и более сложные — Трикветрумы и армиллярные сферы (См. Армиллярная сфера). Последние позволяли определять эклиптические координаты «неподвижных» звёзд. Их списки (каталоги) были составлены в древности Ши Шэнем (Китай, 4 в. до н. э.), Тимохарисом (Греция, 3 в. до н. э.) и Гиппархом на полтораста лет позже (Греция, 2 в. до н. э.). Каталог Гиппарха содержит 1022 звезды с указанием их эклиптические широты и долготы и оценкой блеска в условной шкале звёздных величин, применяемой и поныне. При сравнении своего каталога с каталогом Тимохариса он обнаружил увеличение долгот всех звёзд и объяснил его движением точки весеннего равноденствия, от которой долготы отсчитываются. Так было открыто явление прецессии (См. Прецессия).
         Астрономия в средние века. «Альмагест» Птолемея, в котором были подытожены астрономические знания того времени, оставался в течение многих веков фундаментом геоцентрической системы мира. Возникновение христианства с его догматизмом, нашествия варваров привели к упадку естествознания и, в частности, А. в средние века. В течение целого тысячелетия в Европе было мало прибавлено, но много позабыто из того, что было известно о строении Вселенной благодаря трудам учёных античного мира. Священное писание явилось каноном, из которого черпались ответы на все вопросы, в том числе и из области А.
         Лишь арабы и соприкасавшиеся с ними народы сделали попытку если не реформировать А., то по крайней мере уточнить новыми наблюдениями старые теории. Багдадский халиф аль-Мамун распорядился в 827 перевести сочинение Птолемея с греческого на арабский язык. Арабский учёный аль-Баттаии в конце 9 — начале 10 вв. произвёл многочисленные наблюдения, уточнив значения годичной прецессии, наклона эклиптики к экватору, эксцентриситета и долготы перигея орбиты Солнца. В том же 10 в. арабский астроном Абу-ль-Вефа открыл одно из неравенств (неправильностей) в движении Луны. Большие заслуги в развитии А. принадлежат Абу Рейхану Вируни (Хорезм, конец 10 — 11 вв.), автору разнообразных астрономических исследований. А. процветала у арабских народов и в Ср. Азии вплоть до 15 в. Многие крупнейшие учёные наряду с другими науками занимались уточнением астрономических постоянных геоцентрической теории. Особенно известны астрономические таблицы, составленные в 1252 еврейскими и мавританскими учёными по распоряжению Кастильского правителя Альфонса Х и поэтому называвшиеся альфонсовыми. Наблюдательная А. получила развитие в Азербайджане, где Насирэддин Туси соорудил большую обсерваторию в Мараге. По размерам, количеству и качеству инструментов выдающееся место заняла обсерватория Улугбека в Самарканде, где в 1420—37 был составлен новый большой каталог звёзд. Арабы сохранили от забвения классическую А. греков, обновили планетные таблицы, развили теорию, но, следуя Птолемею, не внесли в А. коренных реформ. В эту эпоху астрономические наблюдения производились также в Китае и Индии.
         В 12—13 вв. некоторое оживление естествознания стало замечаться также и в Европе. Постепенно, не без влияния арабов, наиболее просвещённые люди знакомились с наукой и философией древних греков, сочинения которых переводили (часто с арабского) на латинский язык. Учение Аристотеля было признано согласным с церковной догмой: геоцентрическая система мира не противоречила священному писанию. В Италии, а затем и в других странах Зап. Европы учреждались университеты, которые, хотя и находились под сильным влиянием церковной схоластики, всё же содействовали развитию естествознания.
         Гелиоцентрическая система мира. В связи с развивающимися мореплаванием и географическими исследованиями, требовавшими уточнения знаний положений звёзд и планет, несколько выдающихся астрономов, главным образом в Германии, возобновили наблюдения для усовершенствования планетных таблиц. В передовых университетах преподавалась геометрия, необходимая для усвоения теории эпициклов, и изучался «Альмагест», несколько переводов которого на латинский язык было напечатано в Венеции (1496, 1515 и 1528) и в Базеле (1538). Всё это благоприятствовало тому, что польский астроном Н. Коперник, познакомившийся в Краковском университете и затем в Италии со всеми подробностями теории эпициклов, по возвращении в Польшу произвёл полный переворот в А., вскрыв истинное строение планетной системы с Солнцем в центре и движущимися вокруг него планетами, в том числе и Землёй вместе с её спутником Луной. Уже древнегреческий астроном Аристарх Самосский в 3 в. до н. э. высказывал мысль, что Земля движется вокруг Солнца, а Гераклит ещё раньше предполагал, что Земля вращается вокруг оси. Но только Коперник во всех деталях разработал и обосновал гелиоцентрическую систему мира и последовательно изложил её в сочинении «Об обращениях небесных сфер», напечатанном в Нюрнбергов 1543. Этот труд дал ключ к познанию Вселенной в её действительном строении, а не в виде математической абстракции, описывающей лишь видимую сторону явлений. Однако веками укоренившееся мнение о неподвижной Земле как центре Вселенной, разделяемое церковью, долго не уступало места новому учению, которое не могли понять даже многие выдающиеся люди того времени. Считалось, что система Коперника лишь гипотеза, предназначенная для вычисления планетных движений, чему способствовало предисловие издателя книги Коперника, напечатанное без ведома автора. Даже крупнейший наблюдатель датский астроном Тихо Браге (16 в.) отказывался принять и даже понять гелиоцентрическую систему. Окончательно утвердил теорию Коперника, получив непреложные доказательства её истинности, итальянский физик, механик и астроном Г. Галилей (2-я половина 16 — 1-я половина 17 вв.). Другой пламенный проповедник множественности обитаемых миров — Дж. Бруно (16 в.) за это, с точки зрения церкви, еретическое учение после семилетнего заключения был сожжён в Риме на костре. Астрономические открытия Галилея были сделаны с помощью телескопа, незадолго перед тем изобретённого в Голландии. Галилей, узнав об этом изобретении, летом 1609 в Венеции сделал собственную зрительную трубу и уже в начале следующего года оповестил весь мир о своих удивительных открытиях. На Луне он увидел горы, обнаружил диски у планет, Млечный Путь оказался состоящим из бесчисленных звёзд, невидимых невооружённым глазом, в скоплении Плеяд он насчитал св. 40 звёзд. Затем он открыл 4 спутника Юпитера, которые, обращаясь вокруг центральной планеты, представляли уменьшенную копию планетной системы. Обнаруженная им смена фаз Венеры свидетельствовала о том, что эта планета обращается вокруг Солнца, а не Земли. На самом Солнце Галилей увидел пятна, разделив честь этого открытия с немецкими астрономами К. Шейнером и И. Фабрициусом. И только тогда, когда гелиоцентрическая система мира получила столь блестящие подтверждения, католическая церковь приняла меры к её запрету, считая, что она подрывает авторитет Священного писания. Перед судом инквизиции Галилей был вынужден отречься от учения Коперника (1633). Само же сочинение Коперника было внесено в список (индекс) запрещенных книг (этот запрет официально был снят лишь 200 лет спустя).
         Развитие небесной механики. Современник Галилея И. Кеплер, будучи в Праге ассистентом Тихо Браге, после смерти последнего получил непревзойдённые по точности результаты наблюдений планет, проводившихся в течение более чем 20 лет. Особое внимание Кеплера привлёк Марс, в движении которого он обнаружил значительные отступления от всех прежних теорий. Ценой огромного труда и длительных вычислений ему удалось найти 3 закона движения планет, сыгравших важную роль в развитии небесной механики (т. н. Кеплера законы), 1-й закон, гласящий, что планеты движутся по эллипсам, в фокусе которых находится Солнце, разрушил тысячелетнее представление о том, что орбиты планет обязательно должны быть окружностями. 2-й закон определил переменную скорость движения планеты по орбите, 3-й закон установил математическую связь между размерами эллиптических орбит и периодами обращения планет вокруг Солнца. Таблицы движения планет, составленные Кеплером на основании этих законов, намного превзошли по точности все прежние и оставались в употреблении в течение всего 17 в.
         Дальнейший прогресс А. тесно связан с развитием математики и аналитической механики, с одной стороны, и с успехами оптики и астрономического приборостроения — с другой, фундаментом небесной механики явился закон всемирного тяготения, открытый И. Ньютоном в 1685 (Ньютона закон тяготения). Следствием этого закона оказались и законы Кеплера, но лишь для того частного случая, когда планета движется под влиянием притяжения одного лишь центрального тела — Солнца. Выяснилось, что в реальном случае, при наличии взаимного притяжения между всеми телами Солнечной системы, движение планет сложнее, чем описываемое законами Кеплера, и если они всё же соблюдаются с хорошим приближением, то это результат сильного преобладания притяжения массивного Солнца над притяжением всех остальных планет. Гравитационная сила, выражающаяся простой формулой в случае притяжения между двумя материальными точками, приводит к очень сложным математическим построениям в случае нескольких точек или притяжения между телами, состоящими из многих материальных точек. Именно такими являются все тела Солнечной системы, да и все космические тела вообще. Лишь благодаря трудам многих математиков, прежде всего Ньютона, затем Ж. Лагранжа, Л. Эйлера, П. Лапласа, К. Гаусса и ряда др., сложнейшая задача о движении, фигурах и вращении планет с их спутниками была решена с высокой точностью. Блестяще подтвердившееся предсказание английского астрономом Э. Галлеем следующего появления кометы, носящей теперь его имя, и вычисление французским учёным А. Клеро момента прохождения кометы через перигелий в 1759, открытие в 1846 Нептуна по вычислениям французского астронома У. Леверье, обнаружение на основе вычислений невидимых спутников у некоторых звёзд (у Сириуса и Проциона немецкого астрономом Ф. Бесселем в 1844), впоследствии увиденных в большие телескопы, явились блестящими подтверждениями того, что движение небесных тел происходит в основном под действием гравитационных сил. Наиболее сложным является движение Луны вокруг Земли, но и его удалось представить с почти исчерпывающей точностью. Остававшиеся в движении Луны небольшие отклонения от теории, которые раньше приписывались какому-то негравитационному влиянию, в 20 в. объяснились ошибками в измерениях времени вследствие неравномерности вращения Земли. Т. о., небесная механика, пользуясь данными, доставляемыми астрометрией, оказалась в состоянии объяснить и пред вычислить с очень высокой точностью почти все движения, наблюдаемые как в Солнечной системе, так и в Галактике, и подготовить почву для труднейших экспериментов — запусков искусств, спутников Земли и космических зондов.
         Телескопические наблюдения. Усовершенствование телескопа шло сначала довольно медленно. По сравнению с трубой Галилея некоторым улучшением было предложение Кеплера заменить рассеивающую окулярную линзу собирающей, что расширило поле зрения и позволило применять более сильные увеличения. Этот простой окуляр был затем усовершенствован Х. Гюйгенсом и применяется поныне. Однако вследствие хроматической и отчасти сферической аберрации изображения продолжали оставаться расплывчатыми, с радужными каёмками, что заставляло для уменьшения их влияния увеличивать фокусные расстояния объективов (до 45 м), сохраняя сравнительно малые их диаметры, т. к. в то время не умели выплавлять большие блоки оптического стекла. Но и с такими несовершенными инструментами был сделан ряд важных открытий. Так, Гюйгенс в 1655 разглядел кольца Сатурна (Галилею диск Сатурна казался удлинённым или «тройным»). Гюйгенс открыл наиболее яркий спутник Сатурна, Дж. Кассини обнаружил ещё 4 других, более слабых спутника. Он же в 1675 заметил, что кольцо состоит из двух концентрических частей, разделённых тёмной полоской — «щелью Кассини». В 1675 О. Рёмер по наблюдениям затмений спутников Юпитера открыл конечность скорости света и измерил её.
         Дальнейшее усовершенствование оптических инструментов пошло по другому пути. Ошибочно считая, что дисперсия света пропорциональна преломлению. Ньютон пришёл к заключению, что невозможно сделать объектив ахроматическим. Это явилось толчком к созданию рефлекторов, в которых изображение строится вогнутым зеркалом, принципиально лишённым хроматизма. Постепенное совершенствование искусства шлифовки зеркал, сделанных из сплава олова с медью, позволило делать рефлекторы всё больших размеров, допускающих очень сильные увеличения. Так, в 1789 В. Гершель (Англия) довёл диаметр зеркала до 122 см. Однако начиная с середины 18 в. рефракторы также получили существенное усовершенствование. В это время были созданы стекла с большой дисперсией (флинтглас), и объективы стали делать двойными, сочетая 2 сорта стекла. Наряду со значит. уменьшением хроматизма такие объективы были свободны и от сферической аберрации, что позволило во много раз сократить длину трубы, повысить проницающую силу инструментов и получать чёткое изображение без радужных каёмок.
         При помощи новых инструментов искусные наблюдатели сделали много открытий, причём относящихся не только к телам Солнечной системы (таких, как открытие М. В. Ломоносовым в 1761 атмосферы у Венеры и исследование комет), но и к миру слабых и далёких звёзд. Так, были обнаружены многочисленные звёздные скопления и туманности (считавшиеся в то время также скоплениями, в которых из-за их удалённости не видны отдельные звёзды). Первые каталоги таких объектов были составлены во Франции Ш. Мессье (в 1771 и 1781); введённые им обозначения употребляют и поныне. В результате обширных систематических наблюдений В. Гершель обосновал ограниченность звёздной системы в пространстве и укрепил т. о. предположения И. Ламберта (1761) о существовании многих звёздных систем, из которых та, где находится Солнце, ограничивается Млечным Путём. Лишь в 20 в. эта теория «островной Вселенной» получила подтверждение и дальнейшую разработку.
         Роль телескопа в А. далеко не исчерпывается такими открытиями. Может быть ещё важнее применение телескопа к точным угловым измерениям. У. Гаскойн в Англии (1640) поместил в фокусе телескопа нити, которые видны на фоне наблюдаемого объекта, и этим повысил точность визирования во много десятков раз. Им же был изобретён первый окулярный микрометр для измерений малых угловых расстояний между деталями изображения, одновременно видимыми в поле зрения телескопа. Ж. Пикар во Франции (1667) снабдил телескоп разделёнными кругами, по которым отсчитывались углы с точностью до секунды дуги; это определило и соответствующую точность измерений сферических координат звёзд, без чего не был бы возможен дальнейший прогресс в области астрометрии и звёздной А. Применив такой инструмент в работах по триангуляции во Франции, Пикар получил новые, более точные размеры земного шара, используя которые Ньютон открыл закон всемирного тяготения. Измеряя взаимные положения компонентов двойных звёзд с помощью окулярного микрометра, В. Гершель (1803) установил, что многие из них представляют собой физически связанные взаимным тяготением системы, состоящие из двух (а иногда и больше) звёзд, обращающихся вокруг общего центра масс по законам Кеплера. Этим была доказана действительная универсальность тяготения, действующего во всех местах Вселенной. Сравнивая свои телескопические определения координат звёзд со старыми греческими (Гиппарх, Тимохарис), Галлей обнаружил в 1718, что 3 яркие звезды — Альдебаран, Сириус и Арктур — изменили своё положение настолько, что это нельзя было объяснить ошибками старых наблюдений. Так были открыты Собственные движения звёзд. К 1783 число звёзд с известным собственным движением возросло до 12; исследуя их, В. Гершель пришёл к заключению, что часть собственного движения каждой звезды является отражением движения Солнечной системы в пространстве и определил направление этого движения (в сторону созвездия Геркулеса). Всё это помогло начать изучение распределения и движения звёзд в системе Млечного Пути, получившей впоследствии название Галактики (См. Галактика). Телескопические же наблюдения привели английского астронома Дж. Брадлея в 1725 к открытию явления аберрации света (См. Аберрация света), которое он правильно объяснил конечной скоростью света, а в 1748 — к открытию нутации (См. Нутация) земной оси.
         Одной из фундаментальных и трудных задач А. во все времена было определение астрономической единицы (См. Астрономическая единица) — среднего расстояния Земли от Солнца, которое является основной единицей измерений всех расстояний во Вселенной. Были проведены многие попытки решить проблему, но все они, по мере совершенствования методики и техники наблюдений, приводили всё к большим и большим значениям этой единицы. Первые близкие к истине результаты были получены методом, предложенным Галлеем, — наблюдением из разных точек Земли прохождений Венеры по диску Солнца в 1761, 1769, 1874 и 1882 и определением таким путём параллакса Солнца (последний, при известных размерах Земли, даёт возможность вычислить астрономическую единицу). Для наблюдений этих прохождений снаряжались многочисленные экспедиции. Первое из них было видимо на С. Европы и в Сибири. От Петербургской АН его наблюдал С. Я. Румовский в Селенгинске за Байкалом. Обработка всех наблюдений привела к значениям параллакса Солнца от 8,5" до 10,5". Прохождение в 1769 Румовский наблюдал в Коле, а И. И. Исленьев в Якутске. Однако возлагавшиеся надежды на точность определения параллакса Солнца не сбылись, и после открытия в 1801 малых планет, среди которых имеются весьма близко подходящие к Земле, появилась другая возможность определения этой важной астрономической постоянной. В итоге всех определений, выполненных в 19 в., для параллакса Солнца было принято значение 8,80", что соответствует значению астрономической единицы 149 500 000 км. В 60-х гг. 20 в., на основании радиолокационных измерений, для астрономической единицы принято значение 149,600 млн. км.
         Фундаментальное значение имели первые определения расстояний до звёзд измерением годичных параллаксов (См. Параллакс Солнца). По мере совершенствования телескопических наблюдений становилось ясным, что параллаксы, представляющие собой перспективные смещения звёзд, вызванные годовым движением Земли вокруг Солнца, чрезвычайно малы. Попытки обнаружить эти смещения, начатые вскоре после гениального открытия Коперника и приведшие к ряду неожиданных открытий — аберрации света, физических двойных звёзд, невидимых спутников звёзд, — долгое время оставались безуспешными. Ко времени В. Гершеля выяснилось, что параллаксы даже наиболее близких звёзд не превышают 1", а такие углы и не могли быть измерены инструментами того времени. Лишь В. Я. Струве в 1837 в Дерпте и Ф. Бесселю в 1838 в Кенигсберге удалось впервые уверенно измерить параллаксы соответственно звезды Веги и 61 Лебедя. Т. о., был впервые определён правильный масштаб расстояний во Вселенной. Работы Струве и Бесселя были основаны на визуальных телескопических наблюдениях. С начала 20 в. измерения звёздных параллаксов стали производить исключительно астрофотографическими методами. Найденная впоследствии самая близкая к нам звезда имеет параллакс 0,76", что соответствует расстоянию в 1,3 Парсека (4,3 световых: года).
         Важным направлением А. явилось составление звёздных каталогов (См. Звёздные каталоги), содержащих точнейшие координаты звёзд. Их значение настолько велико, что они были названы фундаментом А. Они нужны как для научных целей, в частности для определения астрономических постоянных и исследования движений во Вселенной, так и для прикладных целей — геодезии, картографии, географических исследований, мореплавания, космонавтики. В этой области особенно большие заслуги имеют обсерватории: Гринвичская (основана в 1675), Пулковская (1839), Вашингтонская (1842) и обсерватория в Кейптауне в Юж. Африке (1820).
         В конце 18 в. сведения о Солнечной; системе пополнились благодаря открытию в 1781 планеты Уран. Изучение закономерностей его движения привело в 1846 к открытию Нептуна, а в 1930 была открыта самая удалённая от Солнца планета Плутон. В 1801 была обнаружена первая малая планета (См. Малые планеты), в настоящее время (конец 60-х гг. 20 в.) известно уже более 1700 тел этого типа. Некоторые из них представляют большой интерес характером своего движения (например, т. н. Троянцы), другие — малостью расстояния, на которое они могут приближаться к Земле.
         Развитие астрофизики. До середины 18 в. из разделов А., составляющих современную астрофизику, лишь фотометрия, первоначально ограничивавшаяся глазомерными оценками блеска звёзд, получила экспериментальную разработку в трудах французского учёного П. Бугера (1729) и теоретическое обоснование в исследованиях немецкого учёного И. Ламберта (1760). Тогда же было окончательно доказано, что Солнце есть звезда, отличающаяся от других звёзд лишь близостью к нам, а что если его удалить на расстояния звёзд, то оно ничем не будет от них отличаться. Изучение количества звёзд: разных звёздных величин позволило В. Я. Струве в 1847 обосновать существование поглощения света в межзвёздном пространстве — явления, окончательно подтвержденного в 1930 американским астрономом Р. Трамплером.
         Огромные и всё увеличивающиеся возможности исследования физической природы и химического состава звёзд были получены благодаря изобретению спектрального анализа (Р. Бунзен и Г. Кирхгоф, 1859). Пионерами применения этого метода к Солнцу, звёздам и туманностям были У. Хёггинс и Дж. Локьер в Англии, А. Секки в Италии, Ж. Жансен во Франции. Чешский физик К. Доплер сформулировал в 1842 свой знаменитый принцип (Доплера эффект), уточнённый А. Физо в 1848 и экспериментально проверенный А. А. Белопольским на лабораторной установке в 1900. Принцип Доплера получил многочисленные применения в А. для измерений движения по лучу зрения и вращения звёзд, турбулентных движений в солнечной фотосфере и пр., а затем и в самых разнообразных областях физики. Спектральный анализ позволил углубить исследования переменных звёзд, изучение которых началось ещё в конце 18 в., а также обнаружить множество спектрально-двойных звёзд, компоненты которых столь близки между собой, что их невозможно раздельно наблюдать даже в самые сильные телескопы.
         Изобретённая в 1839 фотография получила широкое применение в А., когда стали изготовлять сухие фотопластинки. Особенную пользу принесла фотография в сочетании с фотометрией, спектроскопией и астрометрией, позволив глубоко и детально исследовать строение, химический состав и движение различных небесных объектов. Фотоэмульсия как приёмник излучения с большим успехом заменила глаз при многих астрономических наблюдениях, повысив их точность, объективность и документальность, а также позволила фиксировать неуловимые глазом быстротекущие явления и слабые небесные светила. Когда выяснились преимущества и возможности фотографии, в 1888 был принят международный план составления фотографического каталога звёзд всего неба до 11-й звёздной величины общим числом около 3,5 млн. и карт, содержащих около 30 млн. звёзд до 14-й звёздной величины (около 22 000 листов). В выполнении этой работы приняли участие 18 обсерваторий мира. С тех пор Астрофотография заняла прочное место в практике астрономических наблюдений.
         Астрономия в 20 в. А. в 20 в. характеризуется огромным развитием техники наблюдений. Строят большие рефлекторы, в которых быстро темнеющие металлические зеркала заменены стеклянными, посеребрёнными химическим путём либо покрытыми слоем алюминия катодным распыливанием в высоком вакууме. В США в 1908 сооружен рефлектор с зеркалом диаметром 152 см, 254 см в 1917, 508 см в 1948, 305 см в 1959. В СССР в 1960 вступил в строй рефлектор с зеркалом в 260 см, монтируется рефлектор с зеркалом диаметром 600 см. Таким инструментам с современными светоприёмниками становятся доступными звёзды до 25-й звёздной величины, которые в 1010 раз слабее наиболее ярких (см. Астрономические инструменты и приборы).
         Большие успехи достигнуты в создании новых типов приёмников излучения (См. Приёмники излучения). Во много раз повышена чувствительность фотоэмульсий и расширена их спектральная область. Фотоэлектронные умножители (См. Фотоэлектронный умножитель), электронно-оптические преобразователи (См. Электроннооптический преобразователь), методы электронной фотографии (См. Электронная фотография) и телевидения (телевизионные телескопы (См. Телевизионный телескоп)) значительно повысили точность и чувствительность фотометрических наблюдений и ещё более расширили спектральный диапазон регистрируемых излучений. Совершенствование спектральной аппаратуры позволило, с одной стороны, получать спектрограммы с очень высокими дисперсиями, а с другой — регистрировать спектры очень слабых светил. Стал доступным наблюдению мир далёких галактик, находящихся на расстояниях млрд. световых лет (см. Галактики, Вселенная).
         В 30-х гг. 20 в. возник новый, быстро развивающийся раздел А. — радиоастрономия: было обнаружено, что из многих точек небесной сферы к нам приходят электромагнитные излучения в диапазоне от миллиметровых до метровых волн. Многие из этих источников излучения были отождествлены с галактиками. Но в 60-х гг. были найдены практически точечные мощные источники, которыми оказались слабые объекты с необычными оптическими спектрами без тёмных линий поглощения и лишь немногими светлыми эмиссионными линиями. Последние удалось отождествить с линиями водорода и некоторых других элементов, очень сильно смещенными в сторону длинных волн; Красное смещение, будучи истолковано как эффект Доплера, свидетельствует об их огромной, составляющей миллиарды световых лет удалённости. Эти загадочные объекты, излучение которых, по-видимому, имеет синхротронную природу, получили название квазаров. Ещё более загадочны источники радиоизлучения переменной мощности с периодами порядка секунды, названные пульсарами. С помощью радиоастрономических наблюдений изучено распределение межзвёздного водорода в Галактике и подтверждено её спиральное строение (см. Галактика, Межзвёздная среда).
         Энергия звёзд, в частности Солнца, генерируется в их недрах ядерными процессами при температурах, достигающих десятков млн. градусов, что сопровождается выделением особых частиц огромной проницающей способности, т. н. нейтрино. Их исследование привело к возникновению ещё одной отрасли — нейтринной астрономии (См. Нейтринная астрономия).
         Новейшая вычислительная техника нашла широкое применение в обработке наблюдений и открыла новые возможности в небесной механике и астрофизике, в частности при вычислении движения искусственных спутников и межпланетных ракет.
         Значительных успехов достигли исследования Солнца (См. Солнце). Использование специальных фильтров, пропускающих очень узкую полосу спектра, позволило изучить распределение и движение отдельных элементов — водорода, гелия, кальция в солнечной хромосфере. Благодаря разработке специальной методики и аппаратуры стало возможным наблюдать солнечную корону (См. Солнечная корона) вне затмений — в ясный день, а Зеемана явление дало возможность изучать магнитные поля на Солнце, определяющие ряд явлений как на Солнце, так и на Земле.
         Получено много новых сведений о движениях звёзд и расстояниях до них. Однако прямой тригонометрический метод определения Параллаксов даже при современной точности измерений ограничен расстояниями, примерно до 100 Парсек. Разработанные методы определения светимости звёзд по характеру их спектра позволили фотометрическим путём определять расстояния до значительно более удалённых звёзд. Наконец, пульсирующие переменные звёзды — Цефеиды, период изменения блеска которых тесно связан со светимостью, также явились объектами, позволяющими определять расстояния до удалённых звёздных скоплений, галактик, где эти звёзды наблюдаются. Особенно широко развилось исследование переменных звёзд (См. Переменные звёзды), в значительной мере благодаря работам русских и советских учёных. Международный центр, систематизирующий эти исследования, теперь находится в Москве.
         Большой интерес представляет явление, теоретически предвиденное советским учёным А. А. Фридманом в 1922 и исследованное американским астрономом Э. Хабблом в 1929, которое состоит в том, что линии спектра далёких галактик смещены в красную сторону (т. н. красное смещение). Если это смещение трактовать как эффект Доплера, то оно свидетельствует об удалении галактик со скоростями, пропорциональными их расстоянию, т. е. об общем расширении наблюдаемой части Вселенной. Что касается нашей Галактики, то удалось определить её размеры, общую массу и выяснить, что Солнце расположено в ней далеко от центра. Вращение Галактики было обнаружено на основе статистического анализа русским астрономом М. А. Ковальским в 1859 и детально исследовано голландским астрономом Я. Оортом в 1927.
         Огромное значение для исследования звёздной системы и эволюции звёзд имеет зависимость светимости звёзд от спектрального класса, выражающаяся Герцшпрунга — Ресселла диаграммой (См. Герцшпрунга - Ресселла диаграмма) и позволяющая составить более полные представления о путях развития звёзд (См. Звёзды). Успехи современной физики помогли найти и изучить источники звёздной энергии и разработать теорию эволюции звёзд на основе ядерных процессов, совершающихся в их недрах. В свою очередь, результаты астрофизических исследований значительно способствовали успехам ядерной физики. Эволюционные идеи в А. появились намного раньше, чем в других естественных науках. Сформулированная ещё в 1755 И. Кантом космогоническая гипотеза ясно отражала эту мысль. Постепенно формировалось сознание того, что мир произошёл не в результате единовременного акта творения, а что образование звёзд, планетных систем и других небесных объектов есть постоянный процесс, совершающийся и в настоящее время. Подтверждением этого явились закономерности звёздных ассоциаций (См. Звёздные ассоциации), изучение которых начато В. А. Амбарцумяном в 1946. Эти объекты состоят из широко рассеянных групп сравнительно молодых звёзд совместного происхождения, возраст которых оценивается в несколько миллионов лет, тогда как возраст Солнца исчисляется миллиардами лет.
         Начато изучение ещё одного важного космогонического фактора, играющего большую роль в процессах, совершающихся в межзвёздной среде. Это — межзвёздные магнитные поля (См. Межзвёздное магнитное поле). В то время как раньше космогонические теории строились с учётом лишь инерциальных сил и сил всемирного тяготения, теперь принимаются во внимание также и другие воздействия — световое давление и магнитные силы.
         Научная работа в области А. производится в астрономических обсерваториях и научно-исследовательских институтах. Среди них наиболее значительными являются: старейшая Гринвичская астрономическая обсерватория (основана в 1675), ныне из предместья Лондона вынесенная на юг Англии в замок Хёрстмонсо, Главная Астрономическая обсерватория Пулковская АН СССР (1839) близ Ленинграда, Государственный Астрономический институт имени П. К. Штернберга, включивший в свой состав Московскую астрономическую обсерваторию (1830), Вашингтонская морская обсерватория (США; 1842), Капская астрономическая обсерватория (Юж. Африка; 1820), Ликская астрономическая обсерватория (США; 1888), Йерксская астрономическая обсерватория (США; 1897), Крымская астрофизическая обсерватория АН СССР, созданная на базе Симеизской обсерватории, основанной в 1908, Бюраканская астрофизическая обсерватория АН Армянской ССР (1946) и др. (см. Астрономические обсерватории и институты).
         В связи с множеством астрономических объектов, изучаемых А., уже давно встал вопрос о координации и объединении усилий учёных разных стран путём организации международных астрономических обществ и издания соответствующих журналов. В 1821 в Германии начал издаваться журнал «Астрономише нахрихтен» («Astronomische Nachrichten»), который имел международное значение вплоть до 1-й мировой войны. В других странах, где развиты исследования в области А., издаются также научные астрономические журналы, в том числе в СССР с 1924 регулярно выходит «Астрономический журнал», издаваемый АН СССР (см. также Астрономические журналы).
         В 1863 в Германии было образовано Астрономическое общество (Astronomische Gesellschaft), организовавшее составление на 13 обсерваториях разных стран большого каталога с точными координатами звёзд Северного полушария неба. Роль международного, в известной мере, играло также Английское королевское астрономическое общество. После 1-й мировой войны функции координатора научных работ перешли к учрежденному в 1919 Международному астрономическому союзу, который проводит каждые 3 года большие съезды для подведения итогов и обсуждения планов дальнейшего развития А. В России до революции было несколько небольших научных или любительских обществ, на базе которых в 1932 образовалось Всесоюзное астрономо-геодезическое общество (см. также Астрономические общества).
         В 1957 в СССР был запущен 1-й искусственный спутник Земли. Впервые научная аппаратура была вынесена за пределы земной атмосферы, которая своей малой прозрачностью, неспокойствием и неоднородностью мешает астрономическим наблюдениям и сильно ограничивает их. Началась разработка внеатмосферной А., которой принадлежит огромное будущее. Сама А., которая до сих пор могла лишь наблюдать явления, совершающиеся в космосе, никак не влияя на их течение, теперь становится наукой экспериментальной, способной исследовать космическое пространство и изучать небесные тела, прежде всего Луну и ближайшие планеты опытным путём, производя исследования на них самих. Недалеко время, когда астрономические обсерватории будут сооружены на Луне. Но лишь сочетание внеатмосферных наблюдений с наземными даст наиболее полные и ценные результаты в познании Вселенной.
         Лит.: Воронцов-Вельяминов Б. А., Мир звезд, М., 1952; его же, Очерки истории астрономии в СССР, М., 1960; его же, Очерки о Вселенной, 5 изд., М., 1964; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1966; Кларк А., Общедоступная история астрономии в 19 столетии, пер. с англ., Одесса, 1913; Стремгрен Э., Стремгрен Б., Астрономия, пер. с нем., М.—Л., 1941; Фламмарион К., Популярная астрономия, пер. с франц., М.—Л., 1941; Берри А., Краткая история астрономии, пер. с англ., 2 изд., М.—Л., 1946: Паннекук А., История астрономии, пер. с англ., М., 1966; Струве О., Линде Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967; Струве О., Зебергс В., Астрономия 20 в., пер. с англ., М., 1968; Методы астрономии, пер. с англ., М., 1967; Лаврова Н. Б., Библиография русской астрономической литературы. 1800—1900, М., 1968; Bigourdan G., L'astronomie, P., 1916; [Shapley Н., Howarth H.], A source book in astronomy, N. Y.—L., 1929; Waterfield R., A hundred years of astronomy, L. , 1938; Newcomb E., Engelmann R., Populare Astronomie, 8 Aufl., Lpz., 1948; Source book in astronomy. 1900 — 1950, ed. by H. Shapley, Camb. (Mass.), 1960.
         А. А. Михайлов.
II
Астрономия («Астрономия»,)
        реферативный журнал Всесоюзного института научной и технической информации АН СССР. Издается в Москве с 1963 (в 1953—62 издавался реферативный журнал «Астрономия и геодезия»); 12 выпусков в год. Публикует рефераты, аннотации или библиографические описания статей и книг по астрономии, печатающихся в СССР и за рубежом. Каждый номер содержит около 650 публикаций и авторский указатель. Ежегодно отдельными номерами публикуются авторский и предметный указатели.
Современная Энциклопедия
АСТРОНОМИЯ, наука о строении и развитии космических тел, образуемых ими систем и Вселенной в целом. Основные разделы астрономии: астрофизика (исследует физические явления, происходящие в небесных телах, их системах и в космическом пространстве, а также химические процессы в них); звездная астрономия (рассматривает системы звезд, образующих нашу и другие галактики); небесная механика (изучает движения небесных тел, в том числе искусственных, под влиянием всемирного тяготения, а также фигуры равновесия небесных тел); астрометрия (занимается определением положений и движений небесных тел, изучением закономерностей вращения Земли и исчислением времени). Астрономия - древнейшая наука, возникшая из практических потребностей человечества (предсказание сезонных явлений, счет времени, определение местоположения на поверхности Земли и др.). Рождение современной астрономии было связано с отказом от геоцентрической системы мира (Птолемей, 2 в.) и заменой ее гелиоцентрической системой (Н. Коперник, середина 16 в.), с началом телескопических исследований небесных тел (Г. Галилей, начало 17 в.) и открытием закона всемирного тяготения (И. Ньютон, конец 17 в.). Создание в середине 20 в. оптических и радиотелескопов с высокой разрешающей способностью, применение космических аппаратов для астрономических наблюдений привели к открытию радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и др. Знания о космических телах основаны на анализе чрезвычайно слабого излучения, приходящего из космоса с запозданием; мы наблюдаем их такими, какими они были некоторое время назад (например, для квазаров это время составляет миллиарды лет).
В. Д. Гладкий. Древний мир. Энциклопедический словарь
    АСТРОНОМИЯ — в Греции А. развив. в рамках философии, охватыв. все обл. знаний. Решающее значение на развитие греч. А. оказала вавилонская А. Влияние Египта было незначит. вследствие невысок. уровня развития егип. математики и А. Вавилонская А., явл. вспомогат. дисциплиной астрал. религии, изуч. движение небесных тел, представл. его «жизнью бога солнца, бога луны» и т.д. и достигала определ. науч. достижений. Уже ок. 1600 до н.э. эти наблюд. дали возможность понять идентич. вечерней и утренней звезды. Но только с 7 в. в вавилонской А. начали применяться математич. методы, в частн. для описания обнаруж. периодич. движения небесных тел. Астрономич. проблемами занимался Фалес. Предсказание им солнеч. затменения 28 мая 585 до н.э. основыв., вероятно, на использов. вавилонских сведений, позволивших с достаточ. степенью вероятности предсказать это явление. Первые предполож. о шарообразной форме Земли относятся к 5 в. до н.э. Кто первым высказал такую мысль, неизвестно. Предположит. Платон, а затем Гераклид Понтийский и др. выдвинули идею о вращ. Земли. В «Альмагесте» Птолемей описал астролябию, один из важнейших наряду с гномоном астрономич. инструментов.
Орфографический словарь Лопатина
астрон`омия, астрон`омия, -и
Словарь Ожегова
АСТРОН’ОМИЯ, -и, жен. Наука о космических телах, образуемых ими системах и о Вселенной в целом.
прил. астрономический, -ая, -ое. Астрономическая единица (расстояние от Земли до Солнца). Астрономическое число (перен.: чрезвычайно большое).
Словарь Ушакова
АСТРОН’ОМИЯ, астрономии, мн. нет, ·жен. (от ·греч. astron - звезда и nomos - закон). Наука о небесных телах.
Толковый словарь Ефремовой
[астрономия]
ж.
1) Комплексная научная дисциплина, изучающая строение и развитие космических тел, их систем и Вселенной в целом.
2) Учебный предмет, содержащий теоретические основы данной научной дисциплины.
3) разг. Учебник, излагающий содержание данного предмета.
Этимологический словарь Крылова
Название науки о звездах пришло к нам из греческого языка. Смысл первой части этого слова мы узнали, познакомившись со словом <<астра>>, a nomos по-гречески – "закон". Таким образом, астрономией теперь называют науку, занимающуюся изучением Вселенной вообще и звезд в частности.
Антисери Д., Реале Дж. Западная философия от истоков до наших дней

Астрономия: традиционный геоцентризм греков, попытка гелиоцентрического переворота Аристарха и реставрация Гиппархом геоцентризма
    Греки представляли, что вокруг земли вращаются звезды, Солнце, Луна и планеты, совершая правильные круговые движения. Кроме того, считалось, что должна быть сфера, несущая на себе т.н. неподвижные звезды, а также, что у каждой планеты есть своя сфера, а все вместе они вращаются вокруг земли. Напомним, что греческое слово "планета" восходит к слову "planomai", (что значит, блуждаю, скитаюсь), т.е. выполняющая движения, по-видимому, нерегулярные и сложные. Уже Платон понимал недостаточность только одной сферы для каждой планеты, чтобы объяснить видимые аномалии. Его слушатель Евдокс предложил изобретательную гипотезу, допустив многие сферические движения. Комбинируясь между собой, они дают смещение звезд, которые мы наблюдаем. Для Солнца и Луны он положил три сферы, для недвижных звезд, по его мнению, достаточно по одной. Всего у него получилось 26 сфер, в них преобладала геометрико-математическая модель, но не физическая. Каллипп увеличил число сфер до 33. Аристотель же физикализировал систему, введя небесный элемент эфир, а впоследствии и сферы-реагенты, движущиеся вспять; их число в итоге достигает 55.
    Оригинальная идея о том, что "Земля расположена в центре и вращается, в то время как небо покоится", что "Венера и Меркурий вращаются вокруг Солнца, которое в свою очередь, вращается вокруг Земли", была высказана Гераклидом Понтийским (не путать с Гераклитом).
    В первой половине третьего века с поистине революционной попыткой выступил Аристарх Самосский, которого называют античным Коперником. По словам Архимеда, он предположил) что "звезды стоят неподвижно, а земля ходит вокруг солнца, описывая круг", космос бесконечен, а центр всех движущихся сфер - солнце. Лишь один астроном последовал тезису Аристарха - Селевк. Напротив, Аполлоний Пергасский, известный математик, и Гиппарх из Никеи заблокировали этот тезис, восстановив в правах геоцентрическую картину мира, незыблемую вплоть до Коперника.
    Причин неуспеха гелеоцентрического тезиса было немало: 1) религиозная оппозиция, 2) реакция философских эллинистических сект, 3) наконец, здравый смысл, для которого геоцентризм всегда был более очевидным.
    Элиминируя сложности, связанные с умножением сфер, можно выделить две наиболее интересные гипотезы: 1) идею "эпициклов", согласно которой планеты вращаются вокруг Солнца, которое в свою очередь, вращается вокругЗемли; 2) "эксцентрическую" идею, согласно которой центр орбит вращений вокруг Земли не совпадает с центром Земли, т.е. находится вне его, эксцентрично.
    Гиппарх из Никеи (вт.пол. II в.н.э.) остроумно объяснил разность расстояний Солнца от Земли (в связи с временами года) тем, что, относительно Земли, Солнце двигается по эксцентричной орбите. Так, одновременно был спасен геоцентризм, и ни одно из небесных явлений не осталось без объяснения.
    Гиппарх, как никто другой, показал, что по целям человек соразмерен звездам, и, открыв новую звезду, пустился в предприятие, которое по плечу разве что богу, - считать звезды для потомков. Каталоги звезд числом более 850 включали описание инструментов, с помощью которых можно было бы установить их место и величину, даже в их движении и смещениях, тенденцию их роста или сокращения. Так, в наследство он оставил людям небо в надежде на то, что они станут достойными его.
Философский словарь
(греч. astron — звезда и nomos — закон) — наука о положении, движении, строении и развитии небесных тел, их систем и др. форм космической материи. Разделяется на ряд дисциплин, каждая из к-рых, в свою очередь, делится на более мелкие подразделения. Так, астрометрия, включающая сферическую А., а также геодезическую, мореходную и др. разделы практической А., занимается вопросами измерения положения и размеров небесных тел; звездная А. изучает закономерности пространственного распределения и движения звезд и их систем; радиоастрономия исследует различные космические объекты путем наблюдения излучаемых ими радиоволн; астрофизика имеет одной из своих задач исследование физических свойств космического вещества (тел, пыли, газа) и полей; ”сос-могония изучает вопросы их происхождения и развития, космология — общие закономерности строения вселенной как единого связного целого, как всеохватывающей системы космических систем. А. в огромной мере расширяет в пространстве и времени опытную базу естествознания и человеческого познания вообще. Благодаря А. человеческое познание проникает на млрд световых лет в мировое пространство, на сотни млн и млрд лет во времени в прошлое. Объекты А. являются грандиозными естественными физическими лабораториями, где происходят многообразные процессы, к-рые пока вообще не могут быть воспроизведены в земных условиях или воспроизводятся в несравненно меньших масштабах. Так, термоядерные реакции были открыты впервые в звездах и лишь затем воспроизведены на Земле (как неуправляемые, взрывные реакции) ; в космических лучах частицы имеют энергии, пока совершенно недостижимые даже для самых мощных ускорителей; в космосе мы наблюдаем также вещество в сверхплотном и предельно разреженном состоянии, гравитационные и электромагнитные поля колоссальной протяженности и силы, взрывы и ударные волны грандиозных масштабов и т. д. Значительно расширяя опытную базу физики, А. вместе с тем сама опирается в первую очередь на методы и средства физических наук. И все же вплоть до последнего времени А. была наблюдательной наукой, эксперименты она ставить не могла. Начиная с 1957, когда в Советском Союзе был запущен первый искусственный спутник Земли и тем самым положено начало космическим полетам, ситуация резко меняется. Становятся возможными наблюдения за пределами Земли (измерения в межпланетном пространстве, в атмосферах и на поверхности др. планет и т. п.). А. является одной из древн. наук и принадлежит к тем отраслям естествознания, к-рые активно способствуют выработке и распространению правильных, материалистических воззрений на природу.
Бренан - Словарь научной грамотности
Научное изучение Вселенной, находящейся за пределами Земли. Включает в себя, в частности, наблюдение местоположения, движения и эволюции небесных тел и явлений. Астрономию не следует путать с астрологией - псевдонаукой, не подкрепленной никакими надежными фактами.
Научнотехнический Энциклопедический Словарь
АСТРОНОМИЯ, отрасль науки, существующая с древнейших времен, предметом которой является Вселенная и ее составляющие элементы, в том числе движение небесных тел относительно друг друга, их положение на небесной сфере, физическое и химическое строение, происхождение и протекающие на них процессы. К ней относятся небесная механика, АСТРОФИЗИКА, космология и астрометрия. В настоящее время волны всех частей ЭЛЕКТРОМАГНИТНОГО СПЕКТРА можно исследовать либо при помощи наземных приборов, либо (там, где не позволяют атмосферные условия) - посредством наблюдений и измерений, осуществляемых спутниками, космическими зондами и ракетами. История. Астрономия первоначально возникла из практической потребности расчета календаря, единицы которого определялись путем наблюдений за небом. В Китае календарь существовал уже в XIV в. до н. э. Значительный прогресс в астрономию внесли ученые древней Греции в период между 600 и 200 гг. до н.э. ФАЛЕС привнес в нее геометрические принципы, а ПИФАГОР рассматривал Вселенную как систему концентрических сфер. АРИСТОТЕЛЬ считал, что Земля неподвижна, однако, сумел правильно объяснить причину лунных затмений. АРИСТАРХ выдвинул гелиоцентрическую теорию. ГИППАРХ пользовался тригонометрией для определения астрономических расстояний. ПТОЛЕМЕЙ разработал геометрическую систему представлений о СОЛНЕЧНОЙ СИСТЕМЕ, которая позволяла предсказывать движение планет с высокой точностью. Впоследствии развитие астрономии замерло вплоть до научной революции XVI-XVII вв., после того, как КОПЕРНИК создал свою теорию вращения Земли: он утверждал, что Земля вращается вокруг собственной оси и одновременно вместе со всеми другими планетами вращается вокруг Солнца. Эта теория оказала глубокое воздействие на религию и философию того времени. КЕПЛЕР дополнил ее, установив законы планетарного движения, а его современник ГАЛИЛЕЙ при помощи ТЕЛЕСКОПА открыл спутники Юпитера. Исаак Ньютон объединил астрономию с физикой. Его законы движения и общая теория ТЯГОТЕНИЯ подвела физическую основу под законы Кеплера и труды многих астрономов последующих поколений - например, предсказание ГАЛЛЕЕМ движения кометы, названной его именем, а также открытие планет -Урана, Нептуна и Плутона. К началу XIX в. небесная механика, исследование движения тел в космическом пространстве под действием взаимного притяжения, достигла значительного прогресса, и новые математические методы позволили решить все оставшиеся нерешенными задачи классической теории тяготения, касающиеся Солнечной системы. Во второй половине XIX в. в астрономии произошел переворот в связи с введением в научный обиход фотографирования и СПЕКТРОСКОПИИ. Это позволило приступить к исследованиям не расположения, как прежде, а физического строения звезд. Эйнар ГЕРЦШПРУНГ и Генри РАССЕЛ исследовали взаимосвязь между цветом звезды и ее светимостью. К этому времени были также созданы более сильные телескопы, что позволило раздвинуть пределы известной Вселенной. Харлоу ШЕПЛИ определил форму и размеры нашей Галактики, а Эдвин ХАББЛ на основе своих исследований отдаленных галактик разработал теорию расширяющейся Вселенной. Были сформулированы теория «Большого взрыва», как причины возникновения Вселенной, и теория стабильности. В последние годы разведка космоса и наблюдения в различных диапазонах электромагнитного спектра привели к открытию и осмыслению таких понятий, как КВАЗАР, ПУЛЬСАР И ЧЕРНАЯ ДЫРА. В современной астрономии выделяются различные направления. Гамма-лучевая астрономия занимается изучением гамма-излучения, которое не проходит сквозь атмосферу Земли, и его приходится изучать со спутников. Источником этого излучения (в первую очередь -Ред.) является Солнце. Инфракрасная астрономия посвящена обнаружению инфракрасных волн, определению их источника и исследованию их спектров. Большая часть инфракрасного излучения поглощается земной атмосферой. Источниками его являются Солнце и центр Галактики. Оптическая астрономия - это древнейшая область науки, которая исследует источники света в космосе. Лучи света проникают в атмосферу, но при этом искажаются, и поэтому многие наблюдения сейчас проводятся за пределами атмосферы, например, КОСМИЧЕСКИМ ТЕЛЕСКОПОМ ХАББЛА. Радарная астрономия используется для определения расстояний, орбитального движения и особенностей поверхности объектов Солнечной системы. Импульсы радара отражаются от поверхности объектов и возвращаются на Землю. Радиоастрономия при помощи радиотелескопов улавливает радиоволны, идущие из космоса, определяет их источники и спектр энергий. Наиболее мощными источниками являются Солнце, межзвездные скопления горячего водорода, например, в туманности Ориона, остатки сверхновых звезд и пульсары, такие как Крабовидная туманность, квазары и радиогалактики. Ультрафиолетовая астрономия занимается ультрафиолетовыми волнами, идущими из космоса, их источниками и спектрами. Волны большей длины можно изучать и с поверхности Земли, но более короткие приходится изучать при помощи спутников и зондов на воздушных шарах. К источникам этих волн относятся Солнце, туманность Ориона, звезды Вольфа-Райе. Рентгеноскопическая астрономия исследует источники рентгеновского излучения. Оно поглощается атмосферой Земли, поэтому приборы для их обнаружения располагают на спутниках. Источниками его являются Солнце, Крабовидная туманность, Альфа Лебедя и галактика М87.
Лексикон прописных истин
Прекрасная наука.
Очень полезна для мореплавания. А поэтому насмехайтесь над астрологией.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: АСТРОНОМИЯ


будет выглядеть так: Что такое АСТРОНОМИЯ