Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

АЛМАЗ

Большая советская энциклопедия (БЭС)
        минерал, кристаллическая модификация чистого углерода (С). А. обладает самой большой из всех известных в природе материалов твёрдостью, благодаря которой он применяется во многих важных отраслях промышленности. Известны три кристаллические модификации углерода: кубическая — собственно А. и две гексагональные — Графит и лонсдейлит. Последняя найдена в метеоритах и получена искусственно.
         А. природный. А. кристаллизуется в кубические сингонии. Важнейшие кристаллографические формы А.: плоскогранные — октаэдр, ромбододекаэдр, куб и различные их комбинации; кривогранные — додекаэдроиды, октаэдроиды и кубоиды. Встречаются сложные комбинированные формы, двойники срастания по шпине-левому закону, двойники прорастания и зернистые агрегаты. Грани кристаллов обычно покрыты фигурами роста и растворения в форме отдельных выступов и углублений.
         Разновидности А.: баллас (шаровидной формы сферолиты радиально-лучистого строения), карбонадо (скрыто- и микрокристаллические агрегаты неправильной формы, плотные или шлакоподобные), борт (неправильной формы мелко- и крупнозернистые поликристаллические образования).
         Размер природных А. колеблется от микроскопических зёрен до весьма крупных кристаллов массой в сотни и тысячи каратов (1 кар=0,2 г). Масса добываемых А. обычно 0,1—1,0 кар; крупные кристаллы свыше 100 кар встречаются редко. Самый крупный в мире А. «Куллинан», массой 3106 кар, найден в 1905 в Южной Африке; из него было сделано 105 Бриллиантов, в том числе «Звезда Африки» («Куллинан I») в 530,2 кар и «Куллинан II» в 317,4 кар, которые вставлены в королевский скипетр и императорскую корону Англии. Там же найдены А. «Эксцельсиор» в 971,5 кар (1893) и «Джонкер» в 726 кар (1934), из которых также изготовлены бриллианты различной величины.
         Об уникальных алмазах СССР см. в ст. Алмазный фонд СССР.
         В зависимости от качества (размера, формы, цвета, количества и вида дефектов) и назначения А. делятся на 7 категорий и 23 группы: 1-я категория — ювелирные А., 2-я — светлые А. разнообразного назначения, 3-я — А. для однокристального инструмента и оснащения измерительных приборов (например, для измерений твёрдости) и т. д. в соответствии с техническими условиями на природные А.
         На мировом рынке различают 2 вида А. — ювелирные и технические. К ювелирным относятся А. совершенной формы, высокой прозрачности, без трещин, включений и др. дефектов. А., огранённые специальной «бриллиантовой» гранью, называются бриллиантами. Ювелирные А. обычно применяются в виде украшений. а в капиталистических странах и в качестве надёжного источника вложения капитала. К техническим относятся все прочие добываемые А., вне зависимости от их качества и размеров. Технические А. применяются в виде порошков, а также отдельных кристаллов, которым путём огранки придают нужную форму (резцы, фильеры и др.).
         Физические свойства. Элементарная ячейка кристаллической решётки алмаза имеет вид куба. Атомы углерода С расположены в вершинах куба, в центрах его граней, а также в центрах 4 несмежных октантов (рис. 1). Каждый атом С связан с 4 ближайшими соседями, симметрично расположенными по вершинам тетраэдра, наиболее «прочной» химической связью — ковалентной (см. Ковалентная связь). Соседние атомы находятся на расстоянии, равном 0,154 нм. Идеальный кристалл А. можно представить себе как одну гигантскую молекулу. Прочная связь между атомами С обусловливает высокую твёрдость А.
         Структуру, подобную А., имеют и другие элементы IV группы периодической системы Si, Ge, Sn. Однако в последовательности С—Si—Ge—Sn прочность ковалентной связи убывает соответственно с увеличением межатомного расстояния. Кристаллическую решётку А. имеют также многие химические соединения, например соединения элементов III и V групп периодической системы (решётка типа сфалерита — ZnS). Структуры этих соединений (являющихся полупроводниками (См. Полупроводники)) благодаря дополнительной ионной связи (помимо ковалентной), по-видимому, прочнее структур элементов 4-й группы, принадлежащих к тому же периоду системы элементов. Например, соединение азота с бором называется Боразоном, по твёрдости не уступает А.
         Благодаря особенностям кристаллической структуры (все 4 валентных электрона атомов С прочно связаны) идеальный кристалл А. (без примесей и дефектов решётки) должен быть прозрачным для видимого света диэлектриком (См. Диэлектрики). В реальных же кристаллах всегда имеется некоторое количество примесей и дефектов решётки, различное для разных образцов (см. Дефекты в кристаллах ). Даже в наиболее чистых ювелирных А. содержание примесей достигает 1018 атомов на 1 см3. Наиболее распространены примеси Si, Al, Ca и Mg. Распределение примесей в А. может быть неравномерным, например на периферии их больше, чем в центре. Сильные связи между атомами С в структуре А. приводят к тому, что любое несовершенство кристаллической решётки А. оказывает глубокое воздействие на его физические свойства. Этим объясняются, в частности, расхождения данных разных исследователей. При общем описании свойств А. исходят из того, что максимальное содержание примесей составляет 5%, причём количество одной примесной компоненты не превосходит 2%.
         В А. также встречаются твёрдые (оливин, пироксен, гранаты, хромшпинелиды, графит, кварц, окислы железа и т. п.), жидкие (вода, углекислота) и газообразные (азот и др.) включения.
         Плотность А. у различных минералогических образцов колеблется в пределах от 3470 до 3560 кг/м3 (у карбонадо от 3010 до 3470 кг/м3). Вычисленная плотность А. (по рентгенограммам) ~3511 кг/м3. А. — эталон твёрдости Мооса шкалы (См. Мооса шкала) с числом твёрдости 10 (корунд — 9, кварц — 7, кальцит — 3). Микротвёрдость А., измеряемая вдавливанием алмазной пирамидки, составляет от 60—70 до 150 Гн/м2 [или от (6—7)103 до 15—10 кгс/мм2] в зависимости от способа испытания (по Хрущеву и Берковичу ~104 кгс /мм2; корунд ~2103, кварц ~1,1103, кальцит ~1,1102 кгс/мм2). Твёрдость А. на различных кристаллографических гранях не одинакова — наиболее твёрдой является октаэдрическая грань [(111) — см. Миллеровские индексы). А. очень хрупок, обладает весьма совершенной спайностью по грани (111). Анизотропия механических свойств учитывается при обработке монокристаллов А. и их ориентировке в однокристальном инструменте. Модуль Юнга — модуль нормальной упругости Л. 1000 Гн/м2 (~1013 дин[см2), модуль объёмного сжатия 600 Гн/м2 (~61012 дин/см2). Тепловой коэффициент линейного расширения возрастает с температурой от 0,610-5 °С-1 в интервале 53—303 К до 5,710-6 в интервале 1100—1700 К. Коэффициент теплопроводности уменьшается с увеличением температуры в интервале 100—400 К от 6 до 0,8 кдж/мК (от ~14 до~2 кал/сексмС). При комнатной температуре теплопроводность А. выше, чем у серебра, а мольная теплоёмкость равна 5,65 кдж/С кмольК. А. диамагнитен (см. Диамагнетизм), магнитная восприимчивость на единицу массы равна 0,4910-6 единиц СГС при 18° С.
         Цвет и прозрачность А. различны. Встречаются А. бесцветные, белые, голубые, зелёные, желтоватые, коричневые, красноватые (разных оттенков), тёмно-серые (до чёрного). Часто окраска распределена неравномерно. А. изменяет окраску при бомбардировке а-частицами, протонами, нейтронами и дейтронами.
         Показатель преломления А. равен 2,417 (для длины волны = 0,5893 мкм) и возрастает с температурой, Дисперсия 0,063. Угол полного отражения равен 24°24'. Некоторые образцы А. обладают оптической анизотропией, например двойным лучепреломлением (См. Двойное лучепреломление), обусловленным внутренними упругими напряжениями, связанными с неоднородностями строения кристалла. В большинстве А. наблюдается Люминесценция (в зелёной и синей частях спектра) под действием ультрафиолетового и рентгеновского излучений, электронов, ot-частиц и нейтронов. Облучение А. нейтронами не сообщает ему стойкой радиоактивности, уменьшает плотность А., «разрыхляет» решётку (см. Радиационные эффекты в твёрдом теле) и вследствие этого ухудшает его абразивные качества. Большинство А. избирательно поглощает электромагнитное излучение в инфракрасной области спектра ( ~ 8—10 мкм) и в ультрафиолетовой (ниже 0,3 мкм). Их называют А. 1-го типа. Значительно реже встречаются А. 2-го типа (обнаруженные впервые в 1933), не имеющие линий поглощения в области 8—10 мкм и прозрачные до ~ 0,22 мкм. Встречаются А. со смешанными признаками, а также обладающие в одних частях кристалла признаками 1-го типа, а в других — 2-го. Основные спектроскопические характеристики кристаллов хорошо коррелируются с количеством азота, содержащегося в решётке А., и, по-видимому, стойкими различиями кристаллического строения.
         Предложено подразделение А. 2-го типа на 2а и2б, различающиеся электрическими свойствами. Удельное электрическое сопротивление А. 1-го типа ~1012—1014 омм, типа 2а — ~1012 омм. А., принадлежащие к типу 2б, имеют ~0,5—10 омм, они являются примесными полупроводниками р-типа, обладают Фотопроводимостью и при нагревании обнаруживают линии поглощения на длинах волн > 6 мкм (они крайне редки, открыты только в 1952). Встречаются кристаллы А. с исключительно малым сопротивлением ~10-2, которые могут пропускать большие токи. Среди неполупроводниковых А. 2-го типа иногда встречаются кристаллы, электропроводность которых резко возрастает при облучении -частицами, электронами и -лучами. Глубина проникновения -частиц в А. не более 10 мкм, электронов (с энергией ~1 Мэв) — 1 мм. Такие А. могут использоваться в кристаллических счётчиках (См. Кристаллический счётчик). К достоинствам алмазных счетчиков относится способность работать при комнатной температуре, длительно работать в непрерывном режиме, выделять узкие пучки радиации. Их можно стерилизовать, что очень важно, например, для биологических исследований.
         А. стоек к действию кислот и растворов щелочей (даже кипящих), растворяется в расплавах селитры (азотнокислого натрия или калия) и соды (t ~500°С). На воздухе А. сгорает при 850—1000°С, в кислороде — при 720—800°С. В вакууме или в инертном газе при 1400°С начинается заметная поверхностная графитизация А. При повышении температуры этот процесс ускоряется, и в области 2000 °С полное превращение происходит за 15—30 мин. При импульсном нагреве (за несколько мсек) кристаллы А. сохраняются при 3400°С, но превращаются в графит при 3600°С и выше. Эти предельные для А. температуры отмечены на рис. 2 (граница между областями 5 и 3).
         Месторождения и добыча. А. известен человечеству за много веков до н. э. Впервые А. начали добывать в Индии, в 6—10 вв. — на острове Борнео, в 1725 — в Бразилии. С 70-х гг. 19 в. центр добычи А. из Азии и Южной Америки переместился в Африку (сначала в Южную Африку, затем в Центральную, Западную и Восточную Африку).
         А. добываются из коренных и россыпных месторождений. Единственной промышленный коренной породой А. являются Кимберлиты, встречающиеся преимущественно на древних щитах и платформах. Кимберлиты чаще всего представлены трубообразными телами различного размера, дайками, жилами, реже силлами. На глубине нескольких сотен метров от поверхности Земли трубки могут переходить в маломощные жилы и дайки. Наибольший промышленный интерес имеют трубки размером до 15251068 м (трубка «Мвадуи» в Танзании), реже разрабатываются дайки и жилы. На всех платформах известно свыше 1500 кимберлитовых тел, но промышленному содержание А. имеют из них лишь единицы (в зарубежных странах — трубки «Премьер», «Де Бирс», «Бюлтфонтейн», «Дю-тойтспен», «Весселтон», «Кимберли», «Ягерсфонтейн» и «Финш» в ЮАР, «Мвадуи» в Танзании, «Маджгаван» в Индии; дайки и жилы Мали, «Бельсбенк», «Щвартругген» в ЮАР, «Коиду» в Сьерра-Леоне, дайка на р. Бу — Берег Слоновой Кости и др.). В кимберлитах А. распределены весьма неравномерно. Они встречаются одиночными кристаллами и реже их сростками; характерно, что нигде не образуют крупных скоплений.
         Эксплуатируются месторождения с содержанием А. порядка 0,4—0,5 кар/м3 и некоторые трубки с исключительно высококачественными А., в которых содержание снижается до 0,08—0,10 кар/м3 («Ягерсфонтейн» в ЮАР). Добыча из отдельных трубок достигает 2—2,5 млн. кар в год. Некоторые трубки дали значительные количества А. (в млн. кар): «Премьер» около 55, «Бюлтфонтейн» около 24, «Весселтон» около 23 и др.
         Единого мнения о генезисе А. в кимберлитах не имеется. Одни исследователи предполагают, что А. кристаллизуется на больших глубинах в пределах верхней мантии, другие считают, что А. образуется на глубинах 2—4 км в промежуточных очагах, возникающих на границе пород фундамента и осадочного чехла платформ.
         Основная добыча А. идёт из россыпей (80—85%) различных генетических типов (делювиальные, аллювиальные, прибрежно-морские россыпи, которые эксплуатируются при содержании 0,25—0,50 кар/м3).
         В России А. впервые были обнаружены в 1829 на Среднем Урале (в бассейне р. Койвы). За годы Советской власти в СССР создана сырьевая база А. Выявленные месторождения А. на Урале объединяются в Уральскую алмазоносную провинцию, расположенную на западных склонах Южного, Среднего и Северного Урала, где имеются россыпи с высококачественными А. В 1954—55 месторождения А. были открыты в Восточной Сибири, на территории Якутской АССР. Сибирская алмазоносная провинция приурочена к Сибирской платформе; в её пределах известны как россыпные, так и коренные месторождения (последние представлены кимберлитами трубчатой формы). Месторождения сосредоточены в западной Якутии (трубки «Мир», «Удачная», «Айхал» и др.). Найдены также А. на Тимане, Украине и в Казахстане.
         Мировая добыча природных А. (без СССР) возросла с 7,5 млн. кар в 1929 до 30 млн. кар в 1967.
         За всё время эксплуатации месторождений (по 1 января 1968) за рубежом извлечено около 900 млн. кар (180 т) А. Свыше 80% добываемых А. используется в промышленности. До 30-х гг. 20 в. первое место в мировой добыче А. прочно занимал ЮАС (с 1961 — ЮАР) где преобладают ювелирные камни. Впоследствии в связи с сильным ростом спроса на технические А. на первое место по количеству добываемых А. выдвинулось Конго (столица Киншаса), где имеются крупные запасы технического А.
         Добыча природных алмазов в зарубежных странах (тыс. кар)
        
        
        ----------------------------------------------------------------------------------------------------
        |                                                 | 1929        | 1937        | 19671     |
        |---------------------------------------------------------------------------------------------------|
        | Африка                                    |                |                |              |
        |---------------------------------------------------------------------------------------------------|
        | Ангола                                     | 312          | 626          | 1288      |
        |---------------------------------------------------------------------------------------------------|
        | Берег Слоновой Кости              |                |                | 176        |
        |---------------------------------------------------------------------------------------------------|
        | Гана                                         | 861          | 1578        | 2537      |
        |---------------------------------------------------------------------------------------------------|
        | Гвинея                                     |                | 56            | 72          |
        |---------------------------------------------------------------------------------------------------|
        | Конго (столица Киншаса)          | 1910        | 4925        | 13155     |
        |---------------------------------------------------------------------------------------------------|
        | Намибия (Юго-Западная           | 597          | 197          | 1900      |
        | Африка)                                   |                |                |              |
        |---------------------------------------------------------------------------------------------------|
        | Сьерра-Леоне                          | —            | 913          | 1493      |
        |---------------------------------------------------------------------------------------------------|
        | Танзания                                  | 23            | 3             | 927        |
        |---------------------------------------------------------------------------------------------------|
        | Центральноафриканская          | —            | 6             | 521        |
        | Республика                              |                |                |              |
        |---------------------------------------------------------------------------------------------------|
        | ЮАР                                        | 3395        | 1028        | 6668      |
        |---------------------------------------------------------------------------------------------------|
        |---------------------------------------------------------------------------------------------------|
        | Азия                                        |                |                |              |
        |---------------------------------------------------------------------------------------------------|
        | Индия                                      | 1,6           | 1,2           | 8            |
        |---------------------------------------------------------------------------------------------------|
        |---------------------------------------------------------------------------------------------------|
        | Южная Америка                       |                |                |              |
        |---------------------------------------------------------------------------------------------------|
        | Венесуэла                               |                | 15            | 68          |
        |---------------------------------------------------------------------------------------------------|
        | Бразилия                                 | 144          | 197          | 350        |
        |---------------------------------------------------------------------------------------------------|
        | Гайана                                     | 126          | 36            | 97          |
        ----------------------------------------------------------------------------------------------------
        
         1Предварительные данные
        
         В большинстве стран капиталистического мира добыча и сбыт А. контролируются крупнейшей монополией — Алмазным синдикатом (См. Алмазный синдикат).
         Разработка месторождений А. Россыпные месторождения А. разрабатываются открытым способом с применением экскаваторов или драг. Добыча алмазоносной породы из трубок вначале осуществляется при помощи открытых горных выработок; на больших глубинах переходят к подземному способу разработки. Подземная разработка включает магазинирование алмазоносных пород в камерах и выдачу их на транспортные горизонты через рудоспуски.
         Добытая алмазоносная порода после предварительной обработки (в песках — удаление глинистых частиц и крупной гальки, в кимберлитах — дробление и избирательное измельчение) обогащается до получения концентрата на отсадочных машинах или в тяжёлых суспензиях (см. Гравитационное обогащение). Извлечение А. в концентрат достигает 96% от содержания их в горной массе.
         Для извлечения А. из концентратов наибольшее распространение получил жировой процесс, основанный на избирательной способности А. прилипать к жировым поверхностям (предложен Ф. Кирстеном в 1897). Для извлечения мелких А. (до 4 мм) наряду с жировым процессом применяют электростатическую сепарацию (См. Сепарация), основанную на различной проводимости минералов (А. — плохой проводник электричества). В СССР разработан рентгенолюминесцентный метод извлечения А. из концентратов, основанный на способности кристаллов А. люминесцировать. Разрабатываются аппараты, в которых рентгеновские трубки заменены радиоизотопами. Созданы рентгенолюмииесцентные автоматы, в которых вместо визуального обнаружения и ручного съёма А. с конвейерной ленты используется фотоэлектронный умножитель (т. н. электроглаз).
         А. синтетический представляет собой А., получаемый искусственным путём из неалмазного углерода и углеродсодержащих веществ. Синтетический А. имеет кристаллическую структуру и основной химический состав природного А.
         Химический состав А. определён в конце 18 в. Это дало начало многочисленным попыткам получения искусственного (синтетического) А. в различных странах. Надёжные результаты синтеза А. получены в середине 50-х гг. 20 в. почти одновременно в нескольких странах (США, Швеция, ЮАР).
         В Советском Союзе А. впервые синтезированы в институте физики высоких давлений под руководством академика АН СССР Л. Ф. Верещагина. Промышленное производство А. было развито совместно с Украинским институтом сверхтвёрдых материалов. О получении синтетического А. в СССР было объявлено на Июльском пленуме ЦК КПСС (1960).
         А. является кристаллической модификацией углерода стабильной лишь при высоком давлении. Давление равновесия термодинамического (См. Равновесие термодинамическое) между А. и графитом при абсолютном нуле (0 К= —273,16°С) составляет около 1500 Мн/м2 (15 кбар) и возрастает с увеличением температуры (рис. 2, граница между 4 и 5). При давлении, меньшем равновесного, устойчив графит, а при более высоком — А. Однако взаимные превращения А. в графит и графита в А. при давлении, соответственно меньшем или большем равновесного, происходят с заметной скоростью только при достаточно высоких температурах. Поэтому А. при нормальном давлении и температурах до 1000°С сохраняется практически неограниченное время (метастабильное состояние ).
         Непосредственное превращение графита в А. требует высокой температуры и соответственно высокого давления (7 на рис. 2). Поэтому для облегчения синтеза используют различные агенты, способствующие разрушению или деформации кристаллической решётки графита, или снижающие энергию, необходимую для её перестройки. Такие агенты могут оказывать каталитическое действие. Процесс синтеза А. объясняют также растворением графита или образованием неустойчивых соединений с углеродом, который, выделяясь из раствора или при распаде соединений, кристаллизуется в виде А. Роль таких агентов могут играть некоторые металлы (например, железо, никель и их сплавы).
         Необходимое для синтеза давление создаётся мощными гидравлическими прессами (усилием в несколько и десятки Мн, или в сотни и тыс. тс), в камерах с твёрдой сжимаемой средой (см. Давление высокое). В сжимаемой среде располагается нагреватель, содержащий реакционную смесь, состоящую из графита (или др. углеродсодержащего вещества) и металла, облегчающего синтез А. После создания нужного давления смесь нагревается электрическим током до температуры синтеза, который длится от нескольких секунд до нескольких часов (обычно нескольких минут достаточно для образования кристаллов с линейными размерами в десятые доли мм). Для сохранения полученных А. в нормальных условиях (в метастабильном состоянии) прореагировавшая смесь охлаждается до комнатной температуры, а затем снимается давление.
         Вещества, применяемые при синтезе или добавляемые к реакционной смеси, могут входить в А. в виде примесей, обусловливая при этом некоторые их свойства(в первую очередь электрические и оптические). Например, примесь бора сообщает кристаллам А. окраску от светло-синей до тёмно-красной; бор и алюминий придают А. определённые температурные зависимости электросопротивления. Форма и окраска кристаллов зависят также от температурного режима: для синтеза при высокой температуре характерны более совершенные прозрачные октаэдрические кристаллы. Снижение температуры приводит к появлению кубооктаэдрических и кубических кристаллов, а в низкотемпературной области обычно образуются чёрные кубические кристаллы. Микроскопические кристаллы А. могут получаться и без участия катализаторов при сжатии графита в ударной волне (См. Ударная волна). Этот метод пока не получил промышленного применения. Разработаны также методы синтеза А. в области устойчивости графита (9 на рис. 2).
         Сравнительно быстрый рост кристаллов А. синтетические и специфические примеси обусловливают их особые физические и механические свойства. Варьирование условий синтеза позволяет получать кристаллы разных размеров (до 4 мм), степени совершенства, чистоты и, следовательно, с заданными механическими и др. физическими свойствами. При определенных условиях образуются микрокристаллические агрегаты типа баллас (диаметром в несколько мм) и карбонадо, отличающиеся высокой прочностью и, в частности, стойкостью против ударных нагрузок (см. Инструмент алмазный).
         В СССР с 1965 выпускаются технические синтетические А. обыкновенной, повышенной и высокой прочности. Они используются в качестве абразивного материала, а также при изготовлении однокристального инструмента. С расширением выпуска синтетических А. народное хозяйство получает высококачественный абразивный материал, более дешёвый, чем природные А. Не исключено, что развитие методов синтеза А. позволит получать синтетические А. со специальными физическими, например полупроводниковыми, свойствами. Это откроет новую область применения А. в приборостроении. Ежегодное производство синтетических А. в США 7,0 млн. кар (1967).
         Лит.: Шафрановский И. И., Алмазы, М., 1964; Трофимов В. С., Основные закономерности размещения и образования алмазных месторождений на древних платформах и в геосинклинальных областях, М., 1967; Верещагин Л. Ф., Физика высоких давлений и искусственные алмазы, в сборнике: Октябрь и научный прогресс, кн. 1, М., 1967; Бутузов В. П., Методы получения искусственных алмазов, в сборнике: Исследования природного и технического минералообразования, М., 1966; Коломенская М. Я., Натуральные и синтетические алмазы в промышленности, М., 1967; Рожков И. С., Моров А. П., Алмазы на службе человека, М., 1967.
         Соболев В.С., Геология месторождений алмазов Африки, Австралии, острова Борнео и Северной Америки, М., 1951; Ферсман А.Е. , Кристаллография алмаза, М., 1955; Хильтов Ю. М., Главнейшие этапы формирования кимберлитов, «Докл. АН СССР», 1958, т. 123, №3; Васильев В. Г., Ковальский В. В., Черский Н. В., Проблема происхождения алмазов, Якутск, 1961: Орлов Ю. Л., Морфология алмаза, М., 1963; Виноградов А. П., Кропотова О. И. и Устинов В. И., Возможные источники углерода алмазов по изотопным данным С12 С13, «Геохимия», 1965, № 6.
        Уральские алмазы.
        Якутские алмазы: 1 — «Лучезарный» 37,60 кар; 2 — «Комсомольский» 48,48 кар; 3 — «Звезда (Сулус)» 21,66 кар; 4 — «Октябрьский» 68,47 кар; 5 — «Фабричный» 40 кар.
        Исторические алмазы. «Куллинан».3106 кар.
        Исторические алмазы: 1 — «Великий Могол» 279 кар; 2 — «Кохинор» 108,93 кар; 3 — «Санси» 53,75 кар.
         0255757663.tif
        Рис. 1. Элементарная ячейка кристаллической решётки алмаза. Атомы С расположены по вершинам куба, в центрах граней и в центрах 4 несмежных октантов. Плотность упаковки в решётке 34%. В наиболее плотных кристаллических решетках достигается плотность упаковки 68% и 74%. Есть основания полагать, что при высоких давлениях (см. рис. 2) существуют более плотные (может быть — металлические) модификации С.
         0272459482.tif
        Рис. 2. Области существования углерода в различных состояниях (диаграмма состояния): 1 — жидкость; 2 — стабильный алмаз; 3 — стабильный графит; 4 — стабильный алмаз и метастабильный графит; 5 — стабильный графит и метастабильный алмаз; 6 — гипотетическая область существования иных твёрдых состояний углерода; 7 — точки, соответствующие условиям опытов по прямому превращению графита в алмаз; 8 — область образования алмаза с использованием металлов; 9 — область экспериментов по образованию алмазов при низком давлении (Бутузов, СССР).
Современная Энциклопедия
АЛМАЗ (тюркское алмас, от греческого adamas - несокрушимый), минерал, кристаллическая полиморфная модификация углерода. Бесцветные или окрашенные кристаллы с сильным блеском в виде правильных восьмигранников. Самое твердое из известных веществ (твердость 10 по минералогической шкале); плотность около 3,5 г/см3, хрупок. Диэлектрик. Применяют в промышленности как абразив. Крупные прозрачные кристаллы - драгоценные камни 1-го класса. Крупнейшие в мире алмазы: "Куллинан" (3106 кар.; из него получено 105 бриллиантов, в том числе самый большой в мире свыше 530 кар.), "Эксельсиор" (971,5 кар.; 21 бриллиант), "Звезда Сьерра-Леоне" (около 969 кар.; 17 бриллиантов). Мировые запасы (без России) около 1,2 млрд. кар. Главные добывающие страны: Заир, ЮАР, Ботсвана, Намибия, Россия. Освоено промышленное получение алмазов из графита (США, впервые в мире в 1954; Россия, Япония и др.); ежегодно производится несколько млн. кар (в основном для технических нужд).
Мультимедийная энциклопедия
минерал, единственный драгоценный камень, состоящий из одного элемента. Название, возможно, происходит от греч. "адамас" (непобедимый, непреодолимый) или от арабского "ал-мас" (персидское "элма") - очень твердый. Алмаз - это кристаллический углерод. Углерод существует в нескольких твердых аллотропных модификациях, т.е. в различных формах, имеющих разные физические свойства. Алмаз - одна из аллотропных модификаций углерода и самое твердое из известных веществ (твердость 10 по шкале Мооса). Другая аллотропная модификация углерода - графит - одно из самых мягких веществ. Исключительно высокая твердость алмаза имеет большое и важное практическое значение. Он широко используется в промышленности как абразив, а также в режущих инструментах и в буровых коронках. Алмаз кристаллизуется в кубической (изометрической) сингонии и обычно встречается в виде октаэдров или кристаллов близкой формы. При обкалывании алмаза от материнской массы отщепляются обломки минерала. Это становится возможным благодаря совершенной спайности. Цвет разнообразный. Обычно алмазы бесцветные или желтоватые, но известны также голубые, зеленые, ярко-желтые, розово-лиловые, дымчато-вишневые, красные камни; встречаются и черные алмазы. Алмаз прозрачен, иногда просвечивает, бывает и непрозрачным. Черты алмаз не дает; порошок его белый или бесцветный. Плотность алмаза - 3,5. Показатель преломления 2,42, самый высокий среди обычных драгоценных камней. Поскольку критический угол полного внутреннего отражения у этого минерала составляет всего 24,5°, фасеты ограненного алмаза отражают больше света, чем другие камни с аналогичной огранкой, но с меньшим показателем преломления. Алмаз обладает очень сильной оптической дисперсией (0,044), вследствие чего отраженный свет разлагается на спектральные цвета. Эти оптические свойства в сочетании с необыкновенной чистотой и прозрачностью минерала придают алмазу яркий блеск, сверкание и игру. Алмазы обычно люминесцируют в рентгеновских и ультрафиолетовых лучах. У некоторых разностей алмаза люминесценция выражена очень резко. Алмазы прозрачны для рентгеновских лучей. Это облегчает идентификацию алмаза, так как некоторые стекла и бесцветные минералы, например циркон, подчас внешне похожие на него, непрозрачны для рентгеновских лучей той же длины волны и интенсивности. Люминесценция алмаза обусловлена присутствием в нем примеси азота. Примерно 2% алмазов не содержат азота и не флуоресцируют; обычно это мелкие камни. Исключение составляет "Куллинан" - самый большой ювелирный алмаз в мире. Главные производители алмазов - Австралия, Россия, ЮАР и Демократическая Республика Конго, на которые в совокупности приходится более 3/5 мировой добычи алмаза. Другие крупные производители - Ботсвана, Ангола и Намибия. Индия, бывшая единственным источником алмазов до 18 в., в настоящее время добывает их сравнительно немного. Алмазы ювелирного качества встречаются в ЮАР и в Республике Саха (Якутия, Россия) в кимберлитах - темных зернистых ультраосновных вулканических породах, сложенных преимущественно оливином и серпентином. Кимберлиты залегают в форме трубчатых тел ("трубок взрыва") и обычно имеют брекчиевидное строение. Из нескольких тонн добытого кимберлита извлекают доли карата высококачественного алмаза. Алмазы добывают также из аллювиальных (речных) и прибрежно-морских галечных россыпей, куда они выносились в результате разрушения алмазосодержащей кимберлитовой вулканической брекчии. В таких условиях ювелирные камни обычно приобретают шероховатую поверхность. Часто они являются лучшими ограночными камнями, так как противостояли разрушительному действию ударов о камни при переносе водотоками или морскими волнами в зоне прибоя, и поэтому должны представлять прочную крепкую массу, относительно свободную от внутренних напряжений. Известны случаи, когда алмазы, добытые из кимберлитовых трубок, взрывались, что свидетельствует о колоссальном напряжении внутри камня. Это явление дает ключ к пониманию того, что кристаллизация алмазов должна была протекать в условиях громадных давлений. Большинство ограненных алмазов при исследовании в поляризованном свете обнаруживает наличие внутренних напряжений. Полагают, что алмазы образовались на больших глубинах в мантии Земли, а затем не менее чем 3 млрд. лет назад мощными взрывами были вынесены на поверхность. Алмазы обнаружены также в метеоритах. Сверкание и красота алмаза в полной мере раскрываются только после огранки. Долгое время считалось, что Л. ван Беркем из Брюгге в конце 15 в. разработал метод точной симметричной огранки (используемый до сих пор), заключающийся в шлифовке камня на железном круге, на который наносится смесь алмазного порошка и масла. Сейчас существование этого мастера ставится под сомнение. Предполагают, что вышеуказанный метод был разработан в Индии. Ранее полагали также, что бриллиантовую огранку (главный тип огранки округлых алмазов и в настоящее время) изобрел итальянский гранильщик Винченцо Перуцци в конце 17 в., но и это мнение оказалось ошибочным. Бриллиантовая огранка разрабатывалась постепенно на протяжении всего 17 в. Ранее были созданы другие типы симметричной и тщательно спроектированной огранки. Например, огранка розой, когда камни имеют форму капли смолы (т.е. плоское основание и ограненный треугольными фасетами купол), вероятно, появилась в начале 16 в. Однако бриллиантовая огранка, близкая к современной, сложилась лишь в начале 20 в., когда были установлены пропорции и углы, необходимые для придания камню максимального сверкания. Ювелиры называют такую огранку "старой горняцкой". В настоящее время огранка алмаза еще более совершенна. Любой ограненный камень, включая бриллиант, состоит из двух частей: верхней - коронки и нижней - павильона. Между ними располагается узкий поясок, или рундист (самая широкая часть бриллианта). Обычный круглый бриллиант имеет 58 фасетов, или фасеток (искусственных граней). К ним относятся: 1 восьмиугольная таблица (площадка), венчающая коронку, 8 фасетов звезды, 4 главных фасета коронки, 4 угловых фасета коронки, 16 верхних фасетов рундиста (прилегающих к нему сверху), 16 нижних фасетов рундиста (непосредственно под ним), 4 угловых фасета павильона, 4 главных фасета павильона и 1 фасетка на кончике павильона (калета; теперь наносится очень редко). Интерес к алмазам объясняется тем романтическим ореолом, который окружает многие знаменитые драгоценные камни. Так, алмаз "Кох-и-нор" ("Гора света") найден в копях Голконды (Индия). По преданию, в 1304 султан Ала-ад-Дин Хильджи отобрал его у раджи княжества Мальва, в чьей семье камень находился много поколений. Когда он в 1849 перешел во владение Британии, то представлял собой неправильно ограненный "овальной розой" камень массой 186 каратов (1 кар = 0,2 г). По приказу королевы Виктории его переогранили, после чего масса камня уменьшилась до 108,93 кар. Самый замечательный алмаз - "Куллинан" - был обнаружен в 1905 в Трансваале (ЮАР). Масса этого великолепного ювелирного камня в сыром (неограненном) виде составляла 3106 кар (621 г). Он был преподнесен в подарок королю Великобритании Эдуарду VII. Из него изготовили бриллиант ("Звезда Африки") массой 530,2 кар, еще один бриллиант массой 317,4 кар и семь камней массой от 94,45 до 4,39 кар каждый. Кроме того, из его осколков огранили еще 96 мелких бриллиантов общей массой 7,55 кар. В процессе огранки было потеряно 66% исходной массы камня. Алмаз "Питт", или "Регент", имел нескольких владельцев, знаменитых и неизвестных, в Восточной Индии, Британии и Франции. Его масса ныне составляет 140,5 кар (первоначально - ок. 410 кар). Другие исторические алмазы - "Орлов", "Санси", "Шах", "Нассак", "Дрезденский зеленый" и "Хоуп". Второй по величине известный ювелирный алмаз после "Куллинана - "Эксельсиор" (995,2 кар), обнаружен в Южной Африке в 1893. Третий по величине алмаз - "Звезда Сьерра-Леоне" (969,8 кар) найден в 1972 в Сьерра- Леоне. Первые попытки получить искусственные алмазы предпринимались еще в конце 19 в., но все они не имели успеха. Лишь в декабре 1954 учеными компании "Дженерал электрик" Ф.Банди, Т.Холлом, Г.М.Стронгом и Р.Х.Уэнторфом были синтезированы алмазы на аппаратуре, сконструированной П.У.Бриджменом из Гарвардского университета. Под давлением 126 600 кг/см2 и при температуре 2430° С этим ученым удалось получить из графита мелкие технические алмазы. В СССР искусственные алмазы были изготовлены в 1960 в Институте физики высоких давлений АН СССР, руководимом Л.Ф.Верещагиным, а уже в 1961 в Киеве было налажено их промышленное производство. В настоящее время технические алмазы производят в промышленных масштабах. В 1970 Стронгу и Уэнторфу удалось получить искусственные алмазы ювелирного качества. Такие алмазы изготавливаются путем растворения порошка синтетического алмаза в ванне из расплавленного металла. Атомы углерода из растворенного порошка мигрируют к одному краю ванны, где помещаются крошечные затравочные кристаллы алмаза. Атомы углерода оседают и кристаллизуются на этих кристаллах, которые вырастают до алмазов массой в один карат и более. Для этого процесса требуются чрезвычайно высокие давления и температуры. Сегодня искусственные ювелирные алмазы стоят дороже природных, и их производство нерентабельно. Массовый интерес к алмазам объясняется их ценностью как драгоценных камней, но еще более важное значение они приобретают в качестве материала для армирования металлорежущих и других инструментов, широко используемых в промышленности (резцов, сверл, фильер, штампов, дисковых пил, буровых коронок и т.д.), а также в качестве абразивов (алмазных порошков). Ювелирные алмазы, т.е. их прозрачные бесцветные (или слегка желтоватые) и красиво окрашенные кристаллы, составляют лишь малую долю всех добываемых камней. Подавляющее большинство природных алмазов, а также все искусственные алмазы являются техническими, имеющими название "борт". Черная разновидность технических алмазов - карбонадо - состоит из агрегатов мелких алмазных зерен, связанных между собой в плотную или пористую массу. Инструменты, армированные техническими, природными или искусственными алмазами, служат для обработки металлов. Они используются для распиловки, резания, обтачивания, расточки, сверления, вытачивания, штамповки, волочения и т.д. стали и других металлов, карбидов, оксида алюминия (искусственного корунда), кварца, стекла, керамики и прочих твердых материалов, а также для бурения скважин в твердых породах. Алмазные пилы применяют при добыче и обработке строительного камня и для резки поделочных камней. Алмазный порошок служит для обдирки, шлифовки и полировки сталей и сплавов, а также для шлифовки и огранки ювелирных алмазов и других твердых драгоценных камней. Чтобы просверлить в алмазе отверстие, дающее возможность применять его в качестве фильеры, требуются хорошо отсортированный (узко классифицированный по крупности) алмазный порошок, тонкие стальные иглы и смазочные масла. Отверстие может быть пробито и другими способами - с помощью лазерного луча или электрического искрового разряда. Такими методами удается проделать в алмазных волочильных фильерах очень маленькие отверстия диаметром всего 10 мкм. См. также <<АБРАЗИВЫ>>; <<ДРАГОЦЕННЫЕ КАМНИ>>; <<СТАНКИ МЕТАЛЛОРЕЖУЩИЕ>>.
В. Д. Гладкий. Древний мир. Энциклопедический словарь
    АЛМАЗ — самым тверд. веществом в древности счит. инд. А. Достовер. сведений о бриллиантах (обработ. А.) в сохранивш. древ. кольцах нет. Возможно, блеск достиг. с помощью его шлифовки алмазным порошком. В пользу такой догадки говорит полож. А. на вершине шкалы ценностей в античности.
Орфографический словарь Лопатина
алм`аз, алм`аз, -а
Словарь Даля
жен. первый по блеску, твердости и ценности из дорогих (честных) камней; адамант, бриллиант. Алмаз, чистый углерод в гранках (кристаллах), сгорает без остатка, образуя угольную кислоту. Алмаз название общее: бриллиант, более ценный по величине и полной грани, осаживается сквозниною, без подложки; алмаз, неполной грани, плоский, бывает в глухой (с исподу) оправе; розетка, искра, самый мелкий алмаз. Алмаз стекольщичий, неграненый, сырой, в оправе на ребро, на природную грань. Это алмазец порядочный; это алмазик годный; это алмазишка дрянной; а вот алмазище царский. Алмаз стекольщика белит, негоден, не режет, а только скребет, царапает. Свой глаз - алмаз, свой призор. Алмаз алмазом режется, вор вором губится, в сыщики берут такого же вора. Тверд (верен, дорог), как алмаз. Алмаз - ангельская слеза, поверье. Алмазный перстень, с алмазами; алмазный прииск, алмазный блеск. Алмазистый, алмазовидный, подобный ему, сходный с ним. Алмазник муж. торгующий честными каменьями. Алмазчик муж. бриллиантщик, ювелир, кто гранит алмазы или оправляет дорогие каменья.
Словарь Ожегова
АЛМ’АЗ, -а, муж.
1. Прозрачный драгоценный камень, блеском и твёрдостью превосходящий все другие минералы. Ювелирный а. (бриллиант). Сырые алмазы (необработанные, не огранённые в бриллианты).
2. Инструмент для резки стекла в виде острого куска этого камня, вделанного в рукоятку.
• Свой глаз алмаз (разг.) свои глаза лучшая проверка.
прил. алмазный, -ая, -ое. А. рынок.
Словарь синонимов Абрамова
см. драгоценность
Словарь Ушакова
АЛМ’АЗ, алмаза, ·муж. Драгоценный камень, бесцветный и прозрачный, отличающийся большой твердостью. Алмаз, ограненный в известную форму, называется брильянтом.
Тонкий кусок этого камня, вделанный в рукоятку для резки стекла.
Толковый словарь Ефремовой
[алмаз]
м.
1)
а) Драгоценный камень, минерал кристаллического строения, блеском и твердостью превосходящий все другие минералы.
б) перен. Что-л. чрезвычайно ценное, незаурядное, исключительное.
2)
а) Прозрачный кристалл такого минерала, ограненный и отшлифованный особым образом; бриллиант.
б) перен. Что-л., блеском и игрой света напоминающее такой кристалл.
3)
а) Непрозрачный кристалл такого минерала, используемый в технике (при бурении, резании стекла и т.п.).
б) Инструмент с таким кристаллом.
Этимологический словарь Крылова
Это слово существовало уже в древнерусском языке, а заимствовано было из тюркских языков, вероятнее всего из татарского, который в свою очередь позаимствовал слово алмас из арабского. Но и это еще не конец цепочки заимствований: арабское almas восходит к греческому adamas – "несокрушимый". Вполне подходящее слово для определения прочностных свойств этого камня – недаром его применяют в буровых долотах.
Рус. арго (Елистратов)
см.:
глаз-алмаз;
Откуда в жопе алмазы?
Научнотехнический Энциклопедический Словарь
АЛМАЗ, кристаллическая форма углерода (С), самое твердое вещество из всех встречающихся в природе. Их находят в кимберлитовых трубках и аллювиальных отложениях в виде октаэдрических кристаллов кубической системы. Алмаз - это полупрозрачный или полностью прозрачный камень с ярким блеском, обычно бесцветный, но иногда имеющий различные оттенки, в том числе желтый, зеленый, синий и коричневый, в зависимости от содержащихся в нем примесей. Разновидности алмаза, не являющиеся драгоценными камнями, - борт (с худшим качеством кристаллов, желтоватый), карборунд, или черный алмаз (матовый, с окраской от серого до черного), и др. - используются в промышленности. Применяют как абразив, в подшипниках для прецизионных приборов, например, часов, в буровых установках. С 1955 г. налажено производство искусственных алмазов, которые изготовляются путем обработки графита в присутствии катализатора высоким давлением при высоких температурах (около 3000 °С), однако они пригодны лишь для промышленного употребления. Вес алмазов выражается в каратах (0,2 г) и его долях (1/100 карата). Самым крупным производителем алмазов является Австралия. Твердость 10, плотность 3,5.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: АЛМАЗ


будет выглядеть так: Что такое АЛМАЗ