Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

НУКЛЕИНОВЫЕ КИСЛОТЫ

Большая советская энциклопедия (БЭС)
        полинуклеотиды, важнейшие биологически активные Биополимеры, имеющие универсальное распространение в живой природе. Содержатся в каждой клетке всех организмов. Н. к. были открыты в 1868 швейцарским учёным Ф. Мишером в клеточных ядрах (отсюда название: лат. nucleus — ядро), изолированных из гноя, а также из спермиев лосося. Позднее Н. к. были обнаружены не только в ядре, но и в цитоплазме. Различают два главных типа Н. к. — дезоксирибонуклеиновые кислоты (См. Дезоксирибонуклеиновая кислота), или ДНК, содержащиеся преимущественно в ядрах клеток, и Рибонуклеиновые кислоты, или РНК, находящиеся главным образом в цитоплазме.
         Молекулы Н. к. — длинные полимерные цепочки с молекулярной массой 2,5 · 104—4 · 109, построенные из мономерных молекул — нуклеотидов (См. Нуклеотиды) так, что гидроксильные группы у 31 и 51 углеродных атомов углевода соседних нуклеотидов связаны остатком фосфорной кислоты. В состав РНК в качестве углевода входит рибоза, а азотистые компоненты представлены аденином, гуанином (Пуриновые основания), урацилом и цитозином (Пиримидиновые основания). В ДНК углеводным компонентом является дезоксирибоза, а урацил заменен тимином (5-метилурацилом). Фосфат и сахар составляют неспецифическую часть в молекуле нуклеотида, а пуриновое или пиримидиновое основание — специфическую. В составе большинства Н. к. обнаружены в небольших количествах также некоторые другие (главным образом метилированные) производные пуринов и пиримидинов — т. н. минорные основания. Цепи Н. к. содержат от нескольких десятков до многих тысяч нуклеотидных остатков, расположенных линейно в определённой последовательности, уникальной для данной Н. к. Т. о., как РНК, так и ДНК представлены огромным множеством индивидуальных соединений. Линейная последовательность нуклеотидов определяет первичную структуру Н. к. Вторичная структура Н. к. возникает в результате сближения определённых пар оснований, а именно: гуанина с цитозином и аденина с урацилом (или тимином) по принципу комплементарности за счёт водородных связей, а также гидрофобных взаимодействий между ними.
         Биологическая роль Н. к. заключается в хранении, реализации и передаче наследственной информации, «записанной» в молекулах Н. к. в виде последовательности нуклеотидов — т. н. генетического кода (См. Генетический код). При делении клеток — Митозе — происходит самокопирование ДНК — её Репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (Транскрипция) и последующего биосинтеза белков с участием разных типов РНК (Трансляция).
         Исследование строения и функций Н. к. в 50—70-х гг. 20 в. обусловило огромные успехи молекулярной генетики (См. Молекулярная генетика) и молекулярной биологии (См. Молекулярная биология). Важнейшим этапом в изучении химии и биологии Н. к. было создание в 1953 Дж. Уотсоном и Ф. Криком модели ДНК (двойная спираль), что позволило объяснить многие её свойства и биологические функции. Н. к. обнаружены также в клеточных органеллах (хлоропластах, митохондриях и др.), где функции их изучаются. Сравнительный анализ Н. к. в разных группах организмов играет важную роль при решении вопросов систематики и эволюции. Каждый вид организмов содержит специфичные Н. к. (как РНК, так и ДНК). Степень сходства в строении Н. к. указывает на уровень филогенетической близости организмов. См. также Вирусы, Ген, Наследственность.
         Лит.: Нуклеиновые кислоты, пер. с англ., М., 1963; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Дэвидсон Дж., Биохимия нуклеиновых кислот, пер. с англ., М., 1968; Химия и биохимия нуклеиновых кислот, под ред. И. Б. Збарского и С. С. Дебова, Л., 1968; Мирский А., Открытие ДНК, в кн. Молекулы и клетки, пер. с англ., в. 4, М., 1969; Органическая химия нуклеиновых кислот, М., 1970; Методы исследования нуклеиновых кислот, пер. с англ., М., 1970; Строение ДНК и положение организмов в системе, М., 1972; Hofmann Е., Dynamische Biochemie, Bd 1 — Eiweisse und Nucleinsauren als biologische Makromolekule, 2 Aufl., B., 1970.
         И. Б. Збарский.
Мультимедийная энциклопедия
биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными. В 1928 английский бактериолог Ф. Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940-1950 Дж. Бидл и Э. Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал - это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э. Чаргафф в США и Дж. Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации. Структура ДНК была установлена в 1953 М. Уилкинсом, Дж. Уотсоном и Ф. Криком в Англии. Это фундаментальное открытие позволило понять, как происходит удвоение (репликация) нуклеиновых кислот. Вскоре после этого американские исследователи А. Даунс и Дж. Гамов предположили, что структура белков каким-то образом закодирована в нуклеиновых кислотах, а к 1965 эта гипотеза была подтверждена многими исследователями: Ф. Криком в Англии, М. Ниренбергом и С. Очоа в США, Х. Кораной в Индии. Все эти открытия, результат столетнего изучения нуклеиновых кислот, произвели подлинную революцию в биологии. Они позволили объяснить феномен жизни в рамках взаимодействия между атомами и молекулами. Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях ("энергетических станциях" клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией. Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто - молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны. Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме - жидком содержимом клетки. Бльшую ее часть составляет рибосомная РНК (рРНК). Рибосомы - это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков - такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК. Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно. ОБЩИЕ СВОЙСТВА Молекулы нуклеиновых кислот содержат множество отрицательно заряженных фосфатных групп и образуют комплексы с ионами металлов; их калиевая и натриевая соли хорошо растворимы в воде. Концентрированные растворы нуклеиновых кислот очень вязкие и слегка опалесцируют, а в твердом виде эти вещества белые. Нуклеиновые кислоты сильно поглощают ультрафиолетовый свет, и это свойство лежит в основе определения их концентрации. С этим же свойством связан и мутагенный эффект ультрафиолетового света. Длинные молекулы ДНК хрупки и легко ломаются, например при продавливании раствора через шприц. Поэтому работа с высокомолекулярными ДНК требует особой осторожности. Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом: Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1' до 5'. В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислорода меньше. Фрагменты полинуклеотидных цепей ДНК и РНК показаны на рисунке. рибонуклеиновой (б) кислот Поскольку фосфатные группы присоединены к сахару асимметрично, в положениях 3' и 5', молекула нуклеиновой кислоты имеет определенное направление. Сложноэфирные связи между мономерными единицами нуклеиновых кислот чувствительны к гидролитическому расщеплению (ферментативному или химическому), которое приводит к высвобождению отдельных компонентов в виде небольших молекул. Азотистые основания - это плоские гетероциклические соединения. Они присоединены к пентозному кольцу по положению 1ў. Более крупные основания имеют два кольца и называются пуринами: это аденин (А) и гуанин (Г). Основания, меньшие по размерам, имеют одно кольцо и называются пиримидинами: это цитозин (Ц), тимин (Т) и урацил (У). В ДНК входят основания А, Г, Т и Ц, в РНК вместо Т присутствует У. Последний отличается от тимина тем, что у него отсутствует метильная группа (CH3). Урацил встречается в ДНК некоторых вирусов, где он выполняет ту же функцию, что и тимин. Трехмерная структура. Важной особенностью нуклеиновых кислот является регулярность пространственного расположения составляющих их атомов, установленная рентгеноструктурным методом. Молекула ДНК состоит из двух противоположно направленных цепей (иногда содержащих миллионы нуклеотидов), удерживаемых вместе водородными связями между основаниями: Водородные связи, соединяющие основания противоположных цепей, относятся к категории слабых, но благодаря своей многочисленности в молекуле ДНК они прочно стабилизируют ее структуру. Однако если раствор ДНК нагреть примерно до 60° С, эти связи рвутся и цепи расходятся - происходит денатурация ДНК (плавление). Обе цепи ДНК закручены по спирали относительно воображаемой оси, как будто они навиты на цилиндр. Эта структура называется двойной спиралью. На каждый виток спирали приходится десять пар оснований. напоминает винтовую лестницу. Ее боковины составлены из чередующихся остатков сахара и фосфатных групп; каждый остаток сахара в одной боковине соединен со своим партнером в другой с помощью "перекладины", состоящей из пурина (аденина или гуанина) и пиримидина (цитозина или тимина), при этом аденин соединяется только с тимином, а гуанин - с цитозином. Правило комплементарности. Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом: Соответствие А"Т и Г"Ц называют правилом комплементарности, а сами цепи - комплементарными. Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую. Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп. ФУНКЦИЯ НУКЛЕИНОВЫХ КИСЛОТ Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация). Репликация и транскрипция. С химической точки зрения синтез нуклеиновой кислоты - это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом: Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты - ДНК-полимеразы. В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты - матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала. ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи: Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит "сбой", и возникают мутации (см. также <<НАСЛЕДСТВЕННОСТЬ>>). В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК): Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК. В нормальной клетке передача информации осуществляется только в направлении ДНК -> ДНК и ДНК -> РНК. Однако в клетках, инфицированных вирусом, возможны и другие процессы: РНК -> РНК и РНК -> ДНК. Генетический материал многих вирусов представлен молекулой РНК, обычно одноцепочечной. Проникнув в клетку-хозяина, эта РНК реплицируется с образованием комплементарной молекулы, на которой, в свою очередь, синтезируется множество копий исходной вирусной РНК: Вирусная РНК может транскрибироваться ферментом - обратной транскриптазой - в ДНК, которая иногда включается в хромосомную ДНК клетки-хозяина. Теперь эта ДНК несет вирусные гены, и после транскрипции в клетке может появиться вирусная РНК. Таким образом, спустя длительное время, в течение которого никакого вируса в клетке не обнаруживается, он снова в ней появится без повторного заражения. Вирусы, генетический материал которых включается в хромосому клетки-хозяина, часто являются причиной рака. Трансляция нуклеиновых кислот в белки. Генетическая информация, закодированная в нуклеотидной последовательности ДНК, переводится не только на язык нуклеотидной последовательности РНК, но и на язык аминокислот - мономерных единиц белков. Белковая молекула - это цепочка из аминокислот. Каждая аминокислота содержит кислую карбоксильную группу -COOH и оснвную аминогруппу -NH2. Карбоксильная группа одной аминокислоты связывается с аминогруппой другой, образуя амидную связь, и этот процесс продолжается, пока не образуется цепь, содержащая до 1000 аминокислот (см. также <<БЕЛКИ>>). В белках присутствует 20 разных аминокислот, от последовательности которых зависят их природа и функции. Эта последовательность определяется нуклеотидной последовательностью соответствующего гена - участка ДНК, кодирующего данный белок. Однако сама ДНК не является матрицей при синтезе белка. Сначала она транскрибируется в ядре с образованием матричной РНК (мРНК), которая диффундирует в цитоплазму, и на ней как на матрице синтезируется белок. Процесс ускоряется благодаря тому, что на каждой молекуле мРНК может одновременно синтезироваться множество белковых молекул. Репликация нуклеиновых кислот осуществляется благодаря образованию водородных связей между комплементарными основаниями исходной и дочерней цепей. Аминокислоты не образуют водородных связей с основаниями, так что прямое копирование матрицы невозможно. Они взаимодействуют с матрицей опосредованно, через "адапторные" нуклеиновые кислоты - небольшие молекулы транспортных РНК (тРНК), состоящие примерно из 80 оснований и способные связываться с мРНК. Каждая тРНК содержит специфическую последовательность из трех оснований, антикодон, который комплементарен группе из трех оснований, кодону, в мРНК. Антикодоны взаимодействуют с кодонами по правилу комплементарности, примерно так же, как взаимодействуют две цепи ДНК. Таким образом, последовательность оснований в мРНК определяет порядок присоединения тРНК, несущих аминокислоты. Схематически перенос информации от ДНК к белку можно представить следующим образом: Последовательность оснований в ДНК задает порядок следования аминокислот в белке, поскольку каждая аминокислота присоединяется специфическим ферментом только к определенным тРНК, а те, в свою очередь, - только к определенным кодонам в мРНК. Комплексы тРНК-аминокислота связываются с матрицей по одному в каждый данный момент времени. Ниже перечислены основные этапы белкового синтеза (см. также рисунок). 1. Ферменты, называемые аминоацил-тРНК-синтетазами, присоединяют аминокислоты к соответствующим тРНК. Таких ферментов 20, по одному для каждой аминокислоты. 2. Молекула мРНК присоединяется своим первым кодоном к небольшой частице, называемой рибосомой. Рибосомы состоят из примерно равных количеств рРНК и белка. Структура и функция рибосом весьма сложны, но главная их задача - облегчение взаимодействия мРНК и тРНК и ускорение полимеризации аминокислот, связанных с разными тРНК. 3. тРНК, нагруженная аминокислотой, связывается с соответствующим кодоном мРНК, которая, в свою очередь, контактирует с рибосомой. Образуется комплекс рибосома-мРНК-тРНК-аминокислота. 4. мРНК, подобно ленте на конвейере, продвигается по рибосоме на один кодон вперед. 5. Следующая тРНК, нагруженная аминокислотой, присоединяется ко второму кодону. 6. Первая и вторая аминокислоты связываются между собой. 7. Первая тРНК отсоединяется от комплекса, и теперь вторая тРНК несет две аминокислоты, связанные между собой. 8. мРНК снова продвигается на один кодон вперед, и все события повторяются, а растущая аминокислотная цепь удлиняется на одну аминокислоту. Процесс продолжается, пока не будет достигнут последний, "стоп"-кодон и последняя тРНК не отделится от готовой белковой цепи. В бактериальных клетках цепь из 100-200 аминокислот собирается за несколько секунд. В животных клетках этот процесс занимает около минуты. Генетический код. Итак, каждая аминокислота в белке опосредованно детерминируется определенным кодоном (группой из 3 оснований) в мРНК и в конечном счете в ДНК. Поскольку в нуклеиновых кислотах имеется четыре вида оснований, число возможных кодонов составляет 4ґ4ґ4 = 64. Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов - от вирусов до человека. Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии - это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков. Вообще говоря, каждой аминокислоте соответствует более одного кодона. Большинство кодонов, кодирующих одну и ту же аминокислоту, имеют два одинаковых первых основания, но в трех случаях (для лейцина, серина и аргинина) имеются два альтернативных набора первых дублетов в кодонах, соответствующих одной и той же аминокислоте. Природа основания в третьем положении не столь важна; одна и та же аминокислота - глицин - может кодироваться по-разному: ГГУ, ГГЦ, ГГА и ГГГ. Однако кодоны для двух разных аминокислот могут иметь два одинаковых первых основания, и тогда различие между ними будет определяться природой третьего основания - пурином или пиримидином. Так, гистидин кодируется триплетами ЦАУ и ЦАЦ, а глутамин - ЦАА и ЦАГ. Три кодона, УАА, УАГ и УГА, не кодируют никаких аминокислот и называются "бессмысленными". Одна молекула ДНК кодирует много белковых цепей. Каждый отрезок, кодирующий одну цепь, называют цистроном. Начало и конец цистрона, а также граница раздела между ними помечаются с помощью своего рода знаков химической пунктуации. По крайней мере у бактерий в начале цистрона находится метиониновый кодон АУГ. Логично предположить, что первой аминокислотой в белке всегда должен быть метионин, но часто несколько первых аминокислот отщепляются ферментативно после окончания синтеза белка. Конец белковой цепи помечается одним или несколькими "бессмысленными" кодонами. У бактерий (прокариот) практически вся ДНК кодирует какие-либо белки или тРНК. Однако у высших форм (эукариот) значительная часть ДНК состоит из простых повторяющихся последовательностей и "молчащих" генов, которые не транскрибируются в РНК и поэтому не транслируются в белки. Кроме того, исходно синтезированная мРНК содержит участки, не детерминирующие никаких белковых последовательностей. Такие участки (интроны), расположенные между кодирующими участками (экзонами), перед началом синтеза белка удаляются специальными ферментами. Почему в ДНК существуют эти казалось бы бесполезные сегменты - неясно; возможно, они выполняют регуляторные функции. У простейшей Tetrahymena РНК сама удаляет свои интроны и соединяет свободные концы цепей, действуя как фермент по отношению к себе самой. Это единственное известное исключение из правила, согласно которому нуклеиновые кислоты не обладают ферментативной активностью. Транспортные РНК и супрессия. Смысл информации, содержащейся в ДНК, если переводить ее на язык аминокислот, определяется как самой ДНК, так и считывающим механизмом, т.е. зависит не только от того, какие кодоны есть в ДНК и в какой последовательности они расположены, но также и от того, какие именно аминокислоты (и к каким тРНК) присоединяют аминоацил-тРНК- синтетазы. Конечно, природа синтетаз и тРНК тоже определяется ДНК, и в этом смысле ДНК является первичным детерминантом белковой последовательности. Тем не менее суммарная детерминация представляет собой функцию всей системы, поскольку результат зависит от исходных компонентов. Если бы соответствие между тРНК и аминокислотами было другим, смысл кодонов тоже изменился бы. Известно, что мутации в ДНК изменяют считывающий механизм и в результате меняют - пусть и незначительно - смысл кодонов. Так, в бактерии Escherichia coli глициновая тРНК обычно узнает в мРНК кодон ГГА; мутация в ДНК, с которой транскрибируется эта тРНК, изменяет антикодон глициновой тРНК таким образом, что теперь он узнает кодон АГА, соответствующий аргинину, и в белковой молекуле вместо аргинина появляется глицин. Это не обязательно имеет фатальные последствия, поскольку не все аргинины кодируются триплетом АГА и есть аргининовые тРНК, по-прежнему узнающие "свои" АГА. В результате измененными оказываются не все белковые молекулы. Иногда такие мутации, изменяющие антикодон, подавляют (супрессируют) мутации в кодоне. Например, если в результате мутации глициновый кодон ГГА превращается в АГА, он все же может прочитываться как глицин, если антикодон глициновой тРНК, в свою очередь, изменился так, что эта тРНК стала узнавать АГА. В этом случае вторая "ошибка" устраняет первую. Мутации, приводящие к изменению антикодонов, могут иметь разные последствия, поскольку один и тот же кодон может узнаваться несколькими тРНК. Вообще говоря, узнавание осуществляется благодаря комплементарности оснований кодона и антикодона, однако одно из оснований кодона может модифицироваться таким образом, что антикодон будет узнавать даже неполностью комплементарный кодон. В результате одна и та же тРНК может взаимодействовать с несколькими разными кодонами, кодирующими одну и ту же аминокислоту. Этот феномен неполного соответствия кодона и антикодона был назван Ф. Криком "шатанием". Регуляция активности генов. Для организма было бы катастрофой, если бы во всех его клетках одновременно работали все гены и синтезировались все закодированные ими белки. Бактерии, например, должны все время приспосабливаться к условиям среды, синтезируя нужные ферменты. Все клетки высших организмов имеют один и тот же набор генов, но, к счастью, клетки мозга не продуцируют пищеварительные ферменты, а в хрусталике глаза не синтезируются мышечные белки. Активность гена характеризуется тем, транскрибируется ли он с образованием соответствующей мРНК. ДНК - длинная молекула, и в определенных ее участках имеются последовательности, называемые промоторами, которые распознаются специфическим транскрибирующим ферментом - полимеразой. В этих участках и только в них начинается транскрипция, продолжаясь до тех пор, пока не достигнет последовательности оснований, означающей конец считывания. Существуют особые репрессорные белки, которые связываются с ДНК поблизости от промотора в участке, называемом оператором. Образовавшийся комплекс блокирует транскрипцию, и мРНК не синтезируется. Таким образом, репрессорные белки являются ингибиторами транскрипции. С другой стороны, существуют небольшие молекулы, которые образуют комплекс с репрессорами и снимают их блокирующее действие на транскрипцию. Иными словами, они ингибируют ингибиторы. Так, у бактерий в норме отсутствуют ферменты, катализирующие расщепление некоторых сахаров; однако если один из этих сахаров появляется в среде, он образует комплекс с репрессором, ингибирование снимается и запускается синтез соответствующего фермента. Ферменты, синтез которых индуцируется собственными субстратами, называются индуцибельными. В ряде случаев, наоборот, репрессорный белок не блокирует транскрипцию мРНК, если он не связан с определенной молекулой. У бактерий некоторые ферменты, участвующие в синтезе определенных аминокислот, образуются только в отсутствие этих аминокислот, т.е. бактерии производят данные ферменты лишь по мере надобности. Если добавить в среду соответствующую аминокислоту, она образует комплекс с репрессором и активирует его, а тем самым ингибирует транскрипцию соответствующих генов. Уже образовавшаяся мРНК вскоре расщепляется, и синтез ферментов останавливается. Такие ферменты являются отрицально индуцибельными. Поскольку репрессорные белки сами кодируются генами, работа которых, в свою очередь, может регулироваться другими генами, а синтез малых молекул- индукторов и гормонов также в конечном счете регулируется генами, механизмы регуляции генной активности могут быть очень сложными. ЛИТЕРАТУРА Ичас М. Биологический код. М., 1971 Шабарова З.А., Богданов А.А. Химия нуклеиновых кислот и их компонентов, М., 1978 Зенгер В. Принципы структурной организации нуклеиновых кислот. М., 1987
Современная Энциклопедия
НУКЛЕИНОВЫЕ КИСЛОТЫ (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты - дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Последовательность нуклеотидов в нуклеиновых кислотах определяет их первичную структуру. Нуклеиновые кислоты присутствуют в клетках всех живых организмов, участвуют в хранении, передаче и реализации генетической информации.
Медицинская энциклопедия
дезоксирибонуклеиновые и рибонуклеиновые кислоты, универсальные компоненты всех живых организмов, ответственные за хранение, передачу и воспроизведение (реализацию) генетической информации. На два типа все Н. к. делят по углеводному компоненту молекул: дезоксирибозе у дезоксирибонуклеиновых кислот (ДНК) и рибозе у рибонуклеиновых кислот (РНК). Биологическая роль ДНК у большинства организмов заключается в хранении и воспроизведении генетической информации, а РНК — в реализации этой информации в строении молекул белков (<<Белки>>) в процессе их синтеза.
Нуклеиновые кислоты были обнаружены в 1868 г. швейцарским ученым Мишером (F. Miescher), который установил, что эти вещества локализуются в ядрах клеток, обладают кислотными свойствами и в отличие от белков содержат фосфор. Химически Н. к. являются полинуклеотидами, т.е. биополимерами, построенными из мономерных звеньев — мононуклеотидов, или нуклеотидов (фосфорных эфиров так называемых нуклеозидов — производных пуриновых и пиримидиновых азотистых оснований, D-рибозы или 2-дезокси-D-рибозы). Пуриновыми основаниями, входящими в молекулу ДНК, являются аденин (А) и гуанин (Г), пиримидиновыми — цитозин (Ц) и тимин (Т). В нуклеозидах РНК вместо тимина присутствует урацил (У). В полинуклеотидную цепь нуклеотиды соединяются посредством фосфодиэфирной связи (рис. 1).
Первичная структура Н. к. определяется порядком чередования азотистых оснований, а их пространственная конфигурация — нековалентными взаимодействиями между участками молекулы: водородными связями между азотистыми основаниями, гидрофобными взаимодействиями между плоскостями пар оснований, электростатическими взаимодействиями с участием отрицательно заряженных фосфатных групп и противоионов.
Дезоксирибонуклеиновые кислоты, выделенные из различных организмов, отличаются по соотношению входящих в их состав азотистых оснований, т.е. по нуклеотидному составу, который у всех ДНК подчиняется правилу Чаргаффа: 1) число молекул аденина в молекуле Н. к. равно числу молекул тимина, т.е. А = Т; 2) число молекул гуанина равно числу молекул цитозина, т.е. Г = Ц; 3) число молекул пуриновых оснований равно числу молекул пиримидиновых оснований; 4) число 6-аминогрупп равно числу 6-кетогрупп, что означает, что сумма аденин + цитозин равна сумме гуанин + тимин, т.е. А + Ц = Г + Т. Правило Чаргаффа справедливо и для так называемых минорных азотистых оснований (метилированных или других производных пуриновых и пиримидиновых оснований). Таким образом, нуклеотидный состав каждой ДНК характеризуется постоянной величиной — молярным соотношением 0121448458.tif (фактором специфичности) или процентным содержанием Г—Ц-пар, т.е. 0111783698.tif. Величина последнего показателя практически одинакова для организмов одного класса. У высших растений и позвоночных животных она составляет 0,55—0,93.
В 1953 г. американский биохимик Уотсон (J.D. Watson) и английский биофизик Крик (F.Н. Crick), основываясь на правиле Чаргаффа и данных рентгеноструктурного анализа молекул ДНК, установили, что молекула ДНК имеет вид двойной спирали, в которой две антипараллельно направленные углеводно-фосфатные цепи удерживаются водородными связями между аденином и тимином и гуанином и цитозином. Последовательность азотистых оснований в одной цепи определяет их последовательность в другой нуклеотидной цепи, т.к. размеры комплементарных пар А—Т и Г—Ц одинаковы, что позволяет нуклеотидной цепи свернуться в правильную двойную спираль, определяющую вторичную структуру ДНК. На один виток такой спирали приходится 10 пар оснований.
Генетическая информация «зашифрована» в молекуле ДНК в комбинациях нуклеотидов, кодирующих включение в строящуюся полипептидную цепь определенных аминокислот. Установлено, что генетический код универсален для всех живых существ; триплетен, т.е. каждая аминокислота кодируется тройкой нуклеотидов (триплетом); не перекрывается, т.е. данный нуклеотид может входить только в один так называемый кодон; одна аминокислота может кодироваться несколькими триплетами; большинство нуклеотидных триплетов имеет «смысл», т.е. кодирует аминокислоты.
Рентгеноструктурный анализ молекул ДНК показал, что пуриновые и пиримидиновые основания нуклеотида лежат в одной плоскости, практически перпендикулярной продольной оси молекулы (так называемая В-форма двойной спирали ДНК, которую она имеет в физиологических условиях), тогда как остатки дезоксирибозы находятся в плоскости, почти перпендикулярной плоскости, в которой лежат азотистые основания.
Синтез Н. к. в клетке осуществляется по принципу копирования молекулы-матрицы путем реакции поликонденсации нуклеозидтрифосфатов с отщеплением пирофосфата. Этот процесс катализируется ферментами полимеразами. Последовательность азотистых оснований в строящейся молекуле определяется их последовательностью в молекуле-матрице. Синтез молекул ДНК называют репликацией (редупликацией), т.е. образованием молекул-реплик на материнской молекуле.
Генетическая информация из клетки в клетку, из поколения в поколение передается именно путем репликации (редупликации) молекул ДНК, в результате которой из одной молекулы ДНК образуются две дочерние, полностью идентичные материнской, что обеспечивает передачу полного комплекса наследственной информации. В процессе редупликации между парами нуклеотидов разрываются водородные связи, к освободившимся нуклеотидам присоединяются содержащие комплементарные им азотистые основания дезоксинуклеозидтрифосфаты. Т.о., каждая дочерняя двойная спираль включает в себя одну материнскую и одну вновь синтезированную полинуклеотидную цепь. Репликация является сложным процессом, в котором принимают участие множество ферментов, белок, разделяющий нити ДНК, нуклеазы, лигазы и другие белки. Для ее осуществления необходимы матричная ДНК; дезоксирибонуклеозидтрифосфаты всех четырех азотистых оснований, а также ионы Mg2+ (рис. 2).
Рост новой цепи катализируется ферментом ДНК-полимеразой. Репликация начинается (инициируется) в определенных участках молекулы ДНК — репликаторах, первичная структура которых характеризуется высоким содержанием пар А—Т и наличием так называемых обратных повторов (палиндромов). Терминация (окончание) репликации происходит либо при слиянии двух вилок репликации, либо в так называемых точках терминации редупликации. У бактерий и эукариот в каждом цикле деления клетки, как правило, должна реплицироваться вся ДНК и при том один раз, поэтому должны существовать механизмы контроля за инициацией репликации и механизмы, благодаря которым различаются материнские и дочерние молекулы. Иногда (в норме и при патологии) может происходить многократная репликация ДНК всего генома (см. <<Ген>>) без последующего деления клетки, что приводит к возникновению полиплоидных ядер, или репликация отдельных частей генома без репликации всего генома (так называемая экстрарепликация). Описаны случаи недорепликации части ДНК той части генома в клетках эукариот, в которой нет генов, необходимых для жизнеобеспечения клетки. Сходство ферментов, катализирующих этапы репликации, и основных процессов, происходящих в вилке репликации, у прокариот и эукариот свидетельствует о высокой эволюционной стабильности и жестком генетическом контроле репликации ДНК.
Распад ДНК, как и РНК, в норме в живых клетках не происходит. ДНК погибших клеток или клеток, целостность стенки которых нарушена, расщепляется специфическими нуклеазами (ДНК-азой I и ДНК-азой II), катализирующими разрыв межнуклеотидных связей в поли- или олигонуклеотидах без образования неорганического фосфата. По характеру действия нуклеазы являются фосфодиэстеразами. Роль нуклеаз в генетической рекомбинации (см. <<Генетическая инженерия>>), исправлении (репарации) генетических повреждений, защите клетки от чужеродных Н. к. чрезвычайно велика. Их активность в тканях и биологических жидкостях может служить диагностическим тестом при ряде заболеваний. Так, активность ДНК-азы II в сыворотке крови возрастает при острых панкреатитах, особенно геморрагическом панкреатите, а активность РНК-азы в сыворотке крови возрастает при уремии. Генетически обусловленная недостаточность некоторых нуклеаз является причиной тяжелых наследственных заболеваний (например, пигментной ксеродермы).
По способу атаки субстрата нуклеазы делят на экзо- и эндонуклеазы. Экзонуклеазы катализируют последовательное отщепление моно- или олигонуклеотидов от одного из концов полинуклеотидной цепи. Некоторые экзонуклеазы катализируют расщепление и ДНК, и РНК.
Эндонуклеазы катализируют разрыв между внутренними звеньями полинуклеотидной цепи и отличаются гораздо более высокой субстратной специфичностью, чем экзонуклеазы.
В распаде Н. к. принимают участие также нуклеозидазы, которые катализируют расщепление фосфомоноэфирных связей в мононуклеотидах с образованием нуклеозидов и неорганического фосфата, по характеру действия они являются фосфомоноэстеразами, и гидролитические и фосфоролитические нуклеозидазы (нуклеозидгидролазы и нуклеозидфосфорилазы).
Рибонуклеиновые кислоты у большинства организмов обеспечивают реализацию генетической информации, однако у РНК-содержащих вирусов они могут быть также носителями наследственной информации подобно ДНК.
Молекула РНК представляет собой линейный полимер, мономерными звеньями которого являются рибонуклеотиды (их углеводным компонентом служит пентоза—D-1-рибоза). Характерные структурные элементы некоторых РНК представлены минорными основаниями (соответствующие им нуклеотиды входят в состав ряда РНК в очень небольших количествах).
Первичная структура РНК строго специфична и уникальна для каждого вида природной РНК. Она служит формой записи биологической информации, многократно и точно воспроизводящейся в процессе биосинтеза РНК. Структура синтезируемой РНК, строящейся на молекуле ДНК как на матрице (процесс транскрипции), определяется этой молекулой ДНК, что является начальным этапом реализации генетической информации, зашифрованной в ее полинуклеотидной цепи. Синтез РНК-транскрипция катализируется РНК-полимеразами, которые считывают лишь одну, так называемую значащую нить двойной спирали ДНК-матрицы. В процессе транскрипции образуется РНК-копия соответствующей ДНК или РНК-копия гена.
Вторичная и третичная структуры молекулы РНК (ее пространственная конфигурация), как и в молекулах ДНК, формируются в основном за счет водородных связей и межплоскостных гидрофобных взаимодействий между азотистыми основаниями. Однако, если для молекулы ДНК характерен вид устойчивой двунитевой спирали, то вторичная и третичная структуры молекул РНК гораздо более лабильны и вариабельны. Полинуклеотидные цепи РНК обладают большой гибкостью. В растворах с низкой ионной силой молекулы РНК ведут себя как типичные полиэлектролиты; при повышении ионной силы раствора разбухшие цепи РНК сжимаются, на отдельных участках гибкой цепи РНК, которая, перегибаясь, навивается сама на себя, образуются двуспиральные структуры в результате так называемого комплементарного спаривания, как и в молекулах ДНК. Такие структуры в молекулах РНК стабилизируются водородными связями между противолежащими азотистыми основаниями на антипараллельных участках цепи. Специфическими парами азотистых оснований на двуспиральных участках молекулы РНК являются, как и в молекуле ДНК, А—У, Г—Ц и Г—У (урацил вместо тимина). Молекулы РНК, состоящие из двух комплементарных полинуклеотидных цепей, обнаружены в некоторых вирусах; кроме того, они образуются как промежуточные формы при биосинтезе ряда вирусных РНК (так называемые репликативные формы РНК).
Некоторые двуспиральные РНК подобно ДНК могут существовать в виде кольцевых молекул и, если обе полинуклеотидные цепи ковалентно замкнуты, способны образовывать суперспирализованные кольца. РНК могут формировать двухтяжевые комплексы, в которых один тяж представлен полирибонуклеотидной, а другой — полидезоксирибонуклеотидной цепью. Такие ДНК—РНК-гибридные комплексы образуются во время репликации ДНК с участием так называемых затравочных фрагментов РНК, а также во время транскрипции РНК на матрице ДНК. ДНК—РНК-гибридные комплексы возникают также после заражения клеток некоторыми РНК-содержащими вирусами в результате синтеза на вирусной РНК комплементарной ей ДНК с помощью фермента обратной транскриптазы (ревертазы).
Содержание РНК в живых клетках (за исключением сперматозоидов) значительно выше, чем содержание ДНК. Основная масса РНК локализована в цитоплазме клетки: в составе собственно цитоплазматических рибосом (см. <<Клетка>>) и митохондрий, а также присутствует в виде нерибосомных комплексов с белками. В ядро РНК входит хроматин (часть ядерных РНК является продуктом текущей транскрипции генов).
Функции РНК в клетке сложны и многообразны. Различают три основных типа РНК: рибосомные РНК (рРНК), транспортные РНК (тРНК) и информационные, или матричные, РНК (иРНК, или мРНК). В клетках существует еще набор так называемых малых РНК, функции которых пока не выяснены.
Рибосомные РНК составляют около 80% всех клеточных РНК, по массе от 50 до 65% всего материала рибосом приходится на РНК. В каждой субъединице рибосом (большой и малой) РНК служит каркасом, на котором собираются рибосомные белки Сформировавшийся рибонуклеопротеидный комплекс (так называемый рибонуклеопротеидный тяж — РНП-тяж) организуется в сложную компактную частицу — собственно рибосомную субъединицу. Роль рРНК в белоксинтезирующей системе клетки не исчерпывается ее структурными функциями. Полагают, что некоторые участки рРНК играют определенную роль в формировании пептидилтрансферазного центра рибосомы, ответственного за образование пептидных связей между остатками аминокислот при синтезе белка.
Транспортные РНК составляют около 15% от общего количества клеточных РНК. Нуклеотидная цепь тРНК содержит всего 75—90 нуклеотидов, для большинства тРНК установлена полная последовательность нуклеотидов в цепи. Особенностью тРНК является относительно высокое содержание нуклеотидов, включающих минорные азотистые основания. Эти Н. к. с помощью высокоспецифичных ферментов аминоацил-тРНК-синтетаз присоединяют к себе ту или иную аминокислоту и переносят ее на рибосому. Для одной и той же аминокислоты имеется несколько тРНК, которые называют изоакцепторными. Транспортная РНК в ходе синтеза полипептидной цепи белка «узнает» специфическую аминоацил-тРНК-синтетазу, принимает от нее активированную аминокислоту, присоединяется к иРНК на рибосоме и тем самым обеспечивает строгую специфичность выбора и встраивания аминокислот в растущую молекулу белка; после образования пептидной связи между доставленной аминокислотой и уже построенной полипептидной цепью тРНК удерживает эту цепь на рибосоме.
Информационные, или матричные, РНК составляют всего 5% от общего количества клеточной РНК. Их биологическая роль заключается в программировании синтеза всех клеточных белков. Если рРНК и тРНК относятся к «обслуживающему» аппарату белоксинтезирующей системы клетки, то иРНК является прямым посредником между ДНК и белками и служит матрицей для синтеза белков; в форму иРНК переводится большая часть информации, заключенной в ДНК.
В соответствии с химическим строением полинуклеотидной цепи существуют три группы методов количественного определения Н. к.: по содержанию азотистых оснований (спектрофотометрическое определение), углеводного компонента (специфические цветные реакции), по количеству фосфора. Методы второй группы специфичны к типу Н. к. и позволяют отличить ДНК от РНК.
Определение нуклеотидных последовательностей индивидуальных Н. к. представляет большой практический интерес. Это, в частности, путь идентификации мутантных генов и расшифровки молекулярных механизмов, лежащих в основе синтеза аномальных белков при различных формах наследственной патологии (см. <<Наследственные болезни>>).
См. также <<Пиримидиновый обмен>>, <<Пуриновый обмен>>.

Библиогр.: Гайцхски В.С. Информационные РНК клеток животных. М., 1980; Ролан Ж.К., Селоши А. и Селоши Д. Атлас по биологии клетки, пер. с франц., с. 28, М., 1978; Спирин А.С. и Гаврилова Л.П. Рибосома, М., 1968; Уотсон Дж. Д. Молекулярная биология гена, пер. с англ., М., 1978; Шабарова З.А. и Богданов Л.А. Химия нуклеиновых кислот и их компонентов.
Рис. 2. Схема репликации молекулы ДНК: дочерняя цепь (реплика) строится на каждой из родительских полинуклеотидных цепей, как на матрице. Стрелкой указано направление движения так называемой вилки репликации, пунктиром обозначены водородные связи между азотистыми основаниями. А — аденин, Т — тимин, Г — гуанин, Ц — цитозин.
Рис. 1. Схематическое изображение соединения нуклеотидных звеньев в полинуклеотидную цепь нуклеиновой кислоты: в молекулах ДНК R-водород, в молекулах РНК — ОН-группа (гидроксильная группа).
Бренан - Словарь научной грамотности
Цепочки химически связанных молекул, которые управляют работой клеток всех живых организмов. Имеется два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК состоит из нуклеотидов, содержащих сахар деоксирибозу, фосфорную кислоту и одно из следующих четырех оснований: аденин, гуанин, цитозин и тимин. Эти основания связываются с остатками других нуклеотидов в структуру, называемую двойной спиралью. Из ДНК построены гены. РНК образуется из ДНК и играет роль в синтезе белков.
Научнотехнический Энциклопедический Словарь
НУКЛЕИНОВЫЕ КИСЛОТЫ, химические макромолекулы, присутствующие во всех живых организмах и в вирусах. Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) хранит ГЕНЕТИЧЕСКИЙ КОД, который является системой записи наследственной информации; и РНК (рибонуклеиновая кислота), которая доставляет эту закодированную информацию к клеточному БЕЛКУ. По химическому составу нуклеиновые кислоты являются полимерами НУКЛЕОТИДОВ. см. также ХРОМОСОМА, ФЕРМЕНТ, ИНФОРМАЦИОННАЯ РНК.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: НУКЛЕИНОВЫЕ КИСЛОТЫ


будет выглядеть так: Что такое НУКЛЕИНОВЫЕ КИСЛОТЫ