Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

МАТЕМАТИКА

Большая советская энциклопедия (БЭС)
         I. Определение предмета математики, связь с другими науками и техникой.
         Математика (греч. mathematike, от mathema — знание, наука), наука о количественных отношениях и пространственных формах действительного мира.
         «Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть — весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо затушевать его происхождение из внешнего мира. Но чтобы быть в состоянии исследовать эти формы и отношения в чистом виде, необходимо совершенно отделить их от их содержания, оставить это последнее в стороне как нечто безразличное» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20, с. 37). Абстрактность М., однако, не означает её отрыва от материальной действительности. В неразрывной связи с запросами техники и естествознания запас количественных отношений и пространственных форм, изучаемых М., непрерывно расширяется, так что данное выше общее определение М. наполняется всё более богатым содержанием.
         Математика и другие науки. Приложения М. весьма разнообразны. Принципиально область применения математического метода не ограничена: все виды движения материи могут изучаться математически. Однако роль и значение математического метода в различных случаях различны. Никакая определённая математическая схема не исчерпывает всей конкретности действительных явлений, поэтому процесс познания конкретного протекает всегда в борьбе двух тенденций; с одной стороны, выделения формы изучаемых явлений и логического анализа этой формы, с другой стороны, вскрытия моментов, не укладывающихся в установленные формы, и перехода к рассмотрению новых форм, более гибких и полнее охватывающих явления. Если же трудности изучения какого-либо круга явлений состоят в осуществлении второй тенденции, если каждый новый шаг исследования связан с привлечением к рассмотрению качественно новых сторон явлений, то математический метод отступает на задний план; в этом случае диалектический анализ всей конкретности явления может быть лишь затемнён математической схематизацией. Если, наоборот, сравнительно простые и устойчивые основные формы изучаемых явлений охватывают эти явления с большой точностью и полнотой, но зато уже в пределах этих зафиксированных форм возникают достаточно трудные и сложные проблемы, требующие специального математического исследования, в частности создания специальной символической записи и специального алгоритма для своего решения, то мы попадаем в сферу господства математического метода.
         Типичным примером полного господства математического метода является небесная механика, в частности учение о движении планет. Имеющий очень простое математическое выражение закон всемирного тяготения почти полностью определяет изучаемый здесь круг явлений. За исключением теории движения Луны, законно, в пределах доступной нам точности наблюдений, пренебрежение формой и размерами небесных тел — замена их «материальными точками». Но решение возникающей здесь задачи движения n материальных точек под действием сил тяготения уже в случае n = 3 представляет колоссальные трудности. Зато каждый результат, полученный при помощи математического анализа принятой схемы явления, с огромной точностью осуществляется в действительности: логически очень простая схема хорошо отражает избранный круг явлений, и все трудности заключаются в извлечении математических следствий из принятой схемы.
         С переходом от механики к физике ещё не происходит заметного уменьшения роли математического метода, однако значительно возрастают трудности его применения. Почти не существует области физики, не требующей употребления весьма развитого математического аппарата, но часто основная трудность исследования заключается не в развитии математической теории, а в выборе предпосылок для математической обработки и в истолковании результатов, полученных математическим путём.
         На примере ряда физических теорий можно наблюдать способность математического метода охватывать и самый процесс перехода познания действительности с одной ступени на следующую, более высокую и качественно новую. Классическим образцом может служить соотношение между макроскопической теорией диффузии, предполагающей диффундирующее вещество распределённым непрерывно, и статистической теорией диффузии, исходящей из рассмотрения движения отдельных частиц диффундирующего вещества. В первой теории плотность диффундирующего вещества удовлетворяет определённому уравнению с частными производными. К нахождению решений этого дифференциального уравнения при надлежащих краевых и начальных условиях и сводится изучение различных проблем, относящихся к диффузии. Непрерывная теория диффузии с очень большой точностью передаёт действительный ход явлений, поскольку дело идёт об обычных для нас (макроскопических) пространственных и временных масштабах. Однако для малых частей пространства (вмещающих лишь небольшое число частиц диффундирующего вещества) само понятие плотности теряет определённый смысл. Статистическая теория диффузии исходит из рассмотрения микроскопических случайных перемещений диффундирующих частиц под действием молекул растворяющего вещества. Точные количественные закономерности этих микроскопических перемещений нам неизвестны. Однако математическая теория вероятностей позволяет (из общих предпосылок о малости перемещений за малые промежутки времени и независимости перемещений частицы за два последовательных промежутка времени) получить определённые количественные следствия: определить (приближённо) законы распределения вероятностей для перемещений частиц за большие (макроскопические) промежутки времени. Так как число отдельных частиц диффундирующего вещества очень велико, то законы распределения вероятностей для перемещений отдельных частиц приводят, в предположении независимости перемещений каждой частицы от других, к вполне определённым, уже не случайным закономерностям для перемещения диффундирующего вещества в целом: к тем самым дифференциальным уравнениям, на которых построена непрерывная теория. Приведённый пример достаточно типичен в том смысле, что очень часто на почве одного круга закономерностей (в примере — законов движения отдельных частиц диффундирующего вещества) происходит образование другого, качественно нового рода закономерностей (в примере — дифференциальных уравнений непрерывной теории диффузии) через посредство статистики случайных явлений.
         В биологических науках математический метод играет более подчинённую роль. В ещё большей степени, чем в биологии, математический метод уступает своё место непосредственному анализу явлений во всей их конкретной сложности в социальных и гуманитарных науках. Применение математического метода в биологических, социальных и гуманитарных науках осуществляется главным образом через кибернетику (См. Кибернетика) (см. Кибернетика биологическая, Кибернетика медицинская, Кибернетика экономическая). Существенным остаётся значение М. для социальных дисциплин (как и для биологических наук) в форме подсобной науки — математической статистики. В окончательном же анализе социальных явлений моменты качественного своеобразия каждого исторического этапа приобретают столь доминирующее положение, что математический метод часто отступает на задний план.
         Математика и техника. Начала арифметики и элементарной геометрии, как будет видно из исторического очерка, возникли из непосредственных запросов практики; дальнейшее формирование новых математических методов и идей происходит под влиянием опирающегося в своём развитии на запросы практики математического естествознания (астрономии, механики, физики и т. д.). Прямые же связи М. с техникой чаще имеют характер применения уже созданных математических теорий к техническим проблемам. Укажем, однако, примеры возникновения новых общих математических теорий на основе непосредственных запросов техники. Создание метода наименьших квадратов связано с геодезическими работами; изучение многих новых типов дифференциальных уравнений с частными производными впервые было начато с решения технических проблем; операторные методы решения дифференциальных уравнений были развиты в связи с электротехникой и т. д. Из запросов связи возник новый раздел теории вероятностей — теория информации. Задачи синтеза управляющих систем привели к развитию новых разделов математической логики. Наряду с нуждами астрономии решающую роль в развитии методов приближённого решения дифференциальных уравнений играли технические задачи. Целиком на технической почве были созданы многие методы приближённого решения дифференциальных уравнений с частными производными и интегральных уравнений. Задача быстрого фактического получения численных решений приобретает большую остроту с усложнением технических проблем. В связи с возможностями, которые открыли вычислительные машины для решения практических задач, всё большее значение приобретают численные методы. Высокий уровень теоретической М. дал возможность быстро развить методы вычислительной математики (См. Вычислительная математика). Вычислительная М. сыграла большую роль в решении ряда крупнейших практических проблем, включая проблему использования атомной энергии и космические исследования.
         II. История математики до 19 века.
         Ясное понимание самостоятельного положения М. как особой науки, имеющей собственный предмет и метод, стало возможным только после накопления достаточно большого фактического материала и возникло впервые в Древней Греции в 6—5 веках до н. э. Развитие М. до этого времени естественно отнести к периоду зарождения математики, а к 6—5 веку до н. э. приурочить начало периода элементарной математики. В течение этих двух первых периодов математические исследования имеют дело почти исключительно с весьма ограниченным запасом основных понятий, возникших ещё на очень ранних ступенях исторического развития в связи с самыми простыми запросами хозяйственной жизни, сводившимися к счёту предметов, измерению количества продуктов, площадей земельных участков, определению размеров отдельных частей архитектурных сооружений, измерению времени, коммерческим расчётам, навигации и т. п. Первые задачи механики и физики [за исключением отдельных исследований греческого учёного Архимеда (3 век до н. э.), требовавших уже начатков исчисления бесконечно малых] могли ещё удовлетворяться этим же запасом основных математических понятий. Единственной наукой, которая задолго до широкого развития математического изучения явлений природы в 17—18 веках систематически предъявляла М. свои особые и очень большие требования, была астрономия, целиком обусловившая, например, раннее развитие тригонометрии.
         В 17 веке новые запросы естествознания и техники заставляют математиков сосредоточить своё внимание на создании методов, позволяющих математически изучать движение, процессы изменения величин, преобразования геометрических фигур (при проектировании и т. п.). С употребления переменных величин в аналитической геометрии французского учёного Р. Декарта и создания дифференциального и интегрального исчисления начинается период математики переменных величин.
         Дальнейшее расширение круга количественных отношений и пространственных форм, изучаемых М., привело в начале 19 века к необходимости отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм. Создание русским математиком Н. И. Лобачевским его «воображаемой геометрии», получившей впоследствии вполне реальные применения, было первым значительным шагом в этом направлении. Развитие подобного рода исследований внесло в строение М. столь важные новые черты, что М. в 19 и 20 веках естественно отнести к особому периоду современной математики.
         1. Зарождение математики. Счёт предметов на самых ранних ступенях развития культуры привёл к созданию простейших понятий арифметики натуральных чисел. Только на основе разработанной системы устного счисления (См. Счисление) возникают письменные системы счисления и постепенно вырабатываются приёмы выполнения над натуральными числами четырёх арифметических действий (из которых только деление ещё долго представляло большие трудности). Потребности измерения (количества зерна, длины дороги и т. п.) приводят к появлению названий и обозначений простейших дробных чисел и к разработке приёмов выполнения арифметических действий над дробями. Таким образом накапливается материал, складывающийся постепенно в древнейшую математическую науку — арифметику (См. Арифметика). Измерение площадей и объёмов, потребности строительной техники, а несколько позднее — астрономии, вызывают развитие начатков геометрии (См. Геометрия). Эти процессы шли у многих народов в значительной мере независимо и параллельно. Особенное значение для дальнейшего развития науки имело накопление арифметических и геометрических знаний в Египте и Вавилонии. В Вавилонии на основе развитой техники арифметических вычислений появились также начатки алгебры (См. Алгебра), а в связи с запросами астрономии — начатки тригонометрии (См. Тригонометрия).
         Сохранившиеся математические тексты Древнего Египта (1-я половина 2-го тысячелетия до н. э.) состоят по преимуществу из примеров на решение отдельных задач и, в лучшем случае, рецептов для их решения, которые иногда удаётся понять, лишь анализируя числовые примеры, данные в текстах. Следует говорить именно о рецептах для решения отдельных типов задач, так как математической теории в смысле доказательств общих теорем, видимо, вовсе не существовало. Об этом свидетельствует, например, то, что точные решения употреблялись без всякого отличия от приближённых. Тем не менее, самый запас установленных математических фактов был, в соответствии с высокой строительной техникой, сложностью земельных отношений, потребностью в точном календаре и т. п., довольно велик (см. Папирусы математические).
         Математических текстов, позволяющих судить о М. в Вавилонии, несравненно больше, чем египетских. Вавилонские Клинописные математические тексты охватывают период от 2-го тысячелетия до н. э. до возникновения и развития греческой М. Вавилония этого времени получила от более раннего шумерского периода развитую смешанную десятично-шестидесятиричную систему счисления, заключавшую в себе уже позиционный принцип (одни и те же знаки обозначают одно и то же число единиц разных шестидесятиричных разрядов). Деление при помощи таблиц обратных чисел сводилось к умножению. Кроме таблиц обратных чисел, имелись таблицы произведений, квадратов, квадратных и кубических корней. Из достижений вавилонской М. в области геометрии, выходящих за пределы познаний египтян, следует отметить разработанное измерение углов и некоторые начатки тригонометрии, связанные, очевидно, с развитием астрономии. Вавилонянам была уже известна теорема Пифагора.
         2. Период элементарной математики. Только после накопления большого конкретного материала в виде разрозненных приёмов арифметических вычислений, способов определения площадей и объёмов и тому подобного возникает М. как самостоятельная наука с ясным пониманием своеобразия её метода и необходимости систематического развития её основных понятий и предложений в достаточно общей форме. В применении к арифметике и алгебре возможно, что указанный процесс начался уже в Вавилонии. Однако вполне определилось это новое течение, заключавшееся в систематическом и логически последовательном построении основ математической науки, в Древней Греции. Созданная древними греками система изложения элементарной геометрии на два тысячелетия вперёд сделалась образцом дедуктивного построения математической теории. Из арифметики постепенно вырастает Чисел теория. Создаётся систематическое учение о Величинах и измерении (См. Измерение). Процесс формирования (в связи с задачей измерения величин) понятия действительного числа (см. Число) оказывается весьма длительным. Дело в том, что понятия иррационального и отрицательного числа относятся к тем более сложным математическим абстракциям, которые, в отличие от понятий натурального числа, дроби или геометрической фигуры, не имеют достаточно прочной опоры в донаучном общечеловеческом опыте.
         Создание алгебры как буквенного исчисления завершается лишь в конце рассматриваемого двухтысячелетнего периода. Специальные обозначения для неизвестных появляются у греческого математика Диофанта (вероятно, 3 век) и более систематически — в Индии в 7 веке, но обозначение буквами коэффициентов уравнения введено только в 16 веке французским математиком Ф. Виетом.
         Развитие геодезии и астрономии рано приводит к детальной разработке тригонометрии, как плоской, так и сферической.
         Период элементарной М. заканчивается (в Западной Европе в начале 17 века), когда центр тяжести математических интересов переносится в область М. переменных величин.
         Древняя Греция. Развитие М. в Древней Греции приняло существенно иное направление, чем на Востоке. Если в отношении техники проведения вычислений, искусства решения задач алгебраического характера и разработки математических средств астрономии лишь в эллинистическую эпоху был достигнут и превзойдён уровень вавилонской М., то уже гораздо раньше М. в Древней Греции вступила в совершенно новый этап логического развития. Появилась потребность в отчётливых математических доказательствах, были сделаны первые попытки систематического построения математической теории. М., как и всё научное и художественное творчество, перестала быть безличной, какой она была в странах Древнего Востока; она создаётся теперь известными по именам математиками, оставившими после себя математические сочинения (дошедшие до нас лишь в отрывках, сохранённых позднейшими комментаторами).
         Греки считали себя в области арифметики учениками финикиян, объясняя высокое развитие арифметики у них потребностями их обширной торговли; начало же греческой геометрии традиция связывает с путешествиями в Египет (7—6 век до н. э.) первых греческих геометров и философов Фалеса Милетского и Пифагора Самосского. В школе Пифагора арифметика из простого искусства счисления перерастает в теорию чисел. Суммируются простейшие арифметические прогрессии [в частности, 1 + 3 + 5+ ... + (2n — 1) = n2], изучаются делимость чисел, различные виды средних (арифметическое, геометрическое и гармоническое), вопросы теории чисел (например, разыскание так называемых совершенных чисел) связываются в школе Пифагора с мистическим, магическим значением, приписываемым числовым соотношениям. В связи с геометрической теоремой Пифагора был найден метод получения неограниченного ряда троек «пифагоровых чисел», то есть троек целых чисел, удовлетворяющих соотношению a2 + b2 = c2. В области геометрии задачи, которыми занимались греческие геометры 6—5 веков до н. э. после усвоения египетского наследства, также естественно возникают из простейших запросов строительного искусства, землемерия и навигации. Таковы, например, вопросы о соотношении между длинами катетов и гипотенузы прямоугольного треугольника (выражаемом теоремой Пифагора), о соотношении между площадями подобных фигур, квадратуре круга (См. Квадратура круга), трисекции угла (См. Трисекция угла) и удвоении куба (См. Удвоение куба). Новым, однако, является подход к этим задачам, ставший необходимым с усложнением предмета исследования. Не ограничиваясь приближёнными, эмпирически найденными решениями, греческие геометры ищут точных доказательств и логически исчерпывающих решений проблемы. Ярким примером этой новой тенденции может служить доказательство несоизмеримости диагонали квадрата с его стороной. Во 2-й половине 5 века до н. э. философская и научная жизнь Греции сосредоточивается в Афинах. Здесь протекает основная деятельность Гиппия Элидского и Гиппократа Хиосского (См. Гиппократ Хиосский). Первый систематический учебник геометрии приписывают Гиппократу Хиосскому. К этому времени, несомненно, уже была создана разработанная система геометрии, не пренебрегавшая такими логическими тонкостями, как доказательство случаев равенства треугольников и тому подобное. Отражением в М. первых, хотя бы и чисто умозрительных, попыток рационального объяснения строения материи явилось едва ли не самое замечательное достижение геометрии 5 века до н. э. — разыскание всех пяти правильных Многогранников — результат поисков идеальных простейших тел, могущих служить основными камнями мироздания. На границе 5 и 4 веков до н. э. Демокрит, исходя из атомистических представлений, создаёт способ определения объёмов, послуживший позднее для Архимеда исходным пунктом разработки метода бесконечно малых. В 4 веке до н. э. в обстановке политической реакции и упадка могущества Афин наступает эпоха известного подчинения М. ограничениям, выдвинутым идеалистической философией. Наука о числах строго отделяется здесь от «искусства счисления», а геометрия — от «искусства измерения». Опираясь на существование несоизмеримых отрезков, площадей и объёмов, Аристотель налагает общий запрет на применение арифметики к геометрии. В самой геометрии вводится требование об ограничении построениями, осуществимыми при помощи циркуля и линейки. Наиболее значительным конкретным достижением математиков 4 века до н. э. можно считать связанные с тенденцией к логическому анализу основ геометрии исследования Евдокса Книдского (См. Евдокс Книдский).
         Эллинистическая и римская эпоха. С 3 века до н. э. на протяжении семи столетий основным центром научных и особенно математических исследований являлась Александрия. Здесь, в обстановке объединения различных мировых культур, больших государственных и строительных задач и невиданного ранее по своей широте государственного покровительства науке, греческая М. достигла своего высшего расцвета. Несмотря на распространение греческой образованности и научных интересов во всём эллинистическом и римском мире, Александрия с её «музеем», являвшимся первым научно-исследовательским институтом в современном смысле слова, и библиотеками обладала столь большой притягательной силой, что почти все крупнейшие учёные стекались сюда. Из упоминающихся ниже математиков лишь Архимед остался верным родным Сиракузам. Наибольшей напряжённостью математического творчества отличается первый век александрийской эпохи (3 век до н. э.). Этому веку принадлежат Евклид, Архимед, Эратосфен и Аполлоний Пергский.
         В своих «Началах» Евклид собрал и подверг окончательной логической переработке достижения предыдущего периода в области геометрии (см. «Начала» Евклида (См. Начала Евклида)). Вместе с тем в «Началах» же Евклид впервые заложил основы систематической теории чисел, доказывая бесконечность ряда простых чисел и строя законченную теорию делимости. Из геометрических работ Евклида, не вошедших в «Начала», и работ Аполлония Пергского наибольшее значение для дальнейшего развития М. имело создание законченной теории конических сечений (См. Конические сечения). Основной заслугой Архимеда в геометрии явилось определение разнообразных площадей и объёмов (в том числе площадей параболического сегмента и поверхности шара, объёмов шара, шарового сегмента, сегмента параболоида и т. д.) и центров тяжести (например, шарового сегмента и сегмента параболоида); архимедова спираль является лишь одним из примеров изучавшихся в 3 веке до н. э. трансцендентных кривых. После Архимеда, хотя и продолжался рост объёма научных знаний, александрийская наука уже не достигала прежней цельности и глубины; зачатки анализа бесконечно малых, содержавшиеся в эвристических приёмах Архимеда, не получили дальнейшего развития. Следует сказать, что возникший из прикладных нужд интерес к приближённому измерению величин и приближённым вычислениям не привёл математиков 3 века до н. э. к отказу от математической строгости. Все многочисленные приближённые извлечения корней и даже все астрономические вычисления производились ими с точным указанием границ погрешности, по типу знаменитого архимедова определения длины окружности в форме безукоризненно доказанных неравенств
         0130054032.tif
        где р — длина окружности с диаметром d. Это отчётливое понимание того, что приближённая М. не есть «нестрогая» М., было позднее надолго забыто.
         Существенным недостатком всей М. древнего мира было отсутствие окончательно сформированного понятия иррационального числа. Как уже было указано, это обстоятельство привело философию 4 века до н. э. к полному отрицанию законности применения арифметики к изучению геометрических величин. В действительности, в теории пропорций и в Исчерпывания методе математикам 4 и 3 веков до н. э. всё же удалось косвенным образом осуществить это применение арифметики к геометрии. Ближайшие века принесли не положительное разрешение проблемы путём создания фундаментального нового понятия (иррационального числа), а постепенное её забвение, ставшее возможным с постепенной утратой представлений о математической строгости. На этом этапе истории М. временный отказ от математической строгости оказался, однако, полезным, открыв возможность беспрепятственного развития алгебры (допускавшейся в рамках строгих концепций евклидовых «Начал» лишь в чрезвычайно стеснительной форме «геометрической алгебры» отрезков, площадей и объёмов). Значительные успехи в этом направлении можно отметить в «Метрике» Герона. Однако самостоятельное и широкое развитие настоящего алгебраического исчисления встречается лишь в «Арифметике» Диофанта, посвященной в основном решению уравнений. Относя свои исследования к чистой арифметике, Диофант, естественно, ограничивается, в отличие от практика Герона, рациональными решениями, исключая тем самым возможность геометрических или механических приложений своей алгебры. Тригонометрия воспринимается в древнем мире в большой мере как часть астрономии, а не как часть М. К ней так же, как и к вычислительной геометрии Герона, не предъявляется требований полной строгости формулировок и доказательств. Гиппарх первый составил таблицы хорд, исполнявшие роль наших таблиц синусов. Начала сферической тригонометрии создаются Менелаем (См. Менелай) и Клавдием Птолемеем (См. Птолемей).
         В области чистой М. деятельность учёных последних веков древнего мира (кроме Диофанта) всё более сосредоточивается на комментировании старых авторов. Труды учёных-комментаторов этого времени [Паппа (3 век), Прокла (5 век) и других], при всей их универсальности, не могли уже в обстановке упадка античного мира привести к объединению изолированно развивавшихся алгебры Диофанта, включенной в астрономию тригонометрии, и откровенно нестрогой вычислительной геометрии Герона в единую, способную к большому развитию науку.
         Китай. Наличие у китайских математиков высокоразработанной техники вычислений и интереса к общим алгебраическим методам обнаруживает уже «Арифметика в девяти главах», составленная по более ранним источникам во 2—1 веках до н. э. Чжан Цаном и Цзин Чоу-чаном. В этом сочинении описываются, в частности, способы извлечения квадратных и кубических корней из целых чисел. Большое число задач формулируется так, что их можно понять только как примеры, служившие для разъяснения отчётливо воспринятой схемы исключения неизвестных в системах линейных уравнений. В связи с календарными расчётами в Китае возник интерес к задачам такого типа: при делении числа на 3 остаток есть 2, при делении на 5 остаток есть 3, а при делении на 7 остаток есть 2, каково это число Сунь-цзы (между 2 и 6 веками) и более полно Цинь Цзю-шао (13 век) дают изложенное на примерах описание регулярного алгоритма для решения таких задач. Примером высокого развития вычислительных методов в геометрии может служить результат Цзу Чун-чжи (2-я половина 5 века), который показал, что отношение длины окружности к диаметру лежит в пределах
         3,1415926 < < 3,1415927.
        Особенно замечательны работы китайцев по численному решению уравнений. Геометрические задачи, приводящие к уравнениям третьей степени, впервые встречаются у астронома и математика Ван Сяо-туна (1-я половина 7 века). Изложение методов решения уравнений четвёртой и высших степеней было дано в работах математиков 13—14 веков Цинь Цзю-шао, Ли Е, Ян Хуэя и Чжу Ши-цзе.
         Индия. Расцвет индийской М. относится к 5—12 векам (наиболее известны индийские математики Ариабхата, Брахмагупта, Бхаскара). Индийцам принадлежат две основные заслуги. Первой из них является введение в широкое употребление современной десятичной системы счисления и систематическое употребление нуля для обозначения отсутствия единиц данного разряда. Происхождение употреблявшихся в Индии цифр, называемых теперь «арабскими», не вполне выяснено. Второй, ещё более важной заслугой индийских математиков является создание алгебры, свободно оперирующей не только с дробями, но и с иррациональными и отрицательными числами. Однако обычно при истолковании решений задач отрицательные решения считаются невозможными. Вообще следует отметить, что в то время как дробные и иррациональные числа с самого момента своего возникновения связаны с измерением непрерывных величин, отрицательные числа возникают в основном из внутренних потребностей алгебры и лишь позднее (в полной мере в 17 веке) получают самостоятельное значение. В тригонометрии заслугой индийских математиков явилось введение линий синуса, косинуса, синус-верзуса.
         Средняя Азия и Ближний Восток. Арабские завоевания и кратковременное объединение огромных территорий под властью арабских халифов привели к тому, что в течение 9—15 веков учёные Средней Азии, Ближнего Востока и Пиренейского полуострова пользовались арабским языком. Наука здесь развивается в мировых торговых городах, в обстановке широкого международного общения и государственной поддержки больших научных начинаний. Блестящим завершением этой эпохи явилась в 15 веке деятельность Улугбека, который при своём дворе и обсерватории в Самарканде собрал более ста учёных и организовал долго остававшиеся непревзойдёнными астрономические наблюдения, вычисление математических таблиц и т. п.
         В западноевропейской науке длительное время господствовало мнение, что роль «арабской культуры» в области М. сводится в основном к сохранению и передаче математикам Западной Европы математических открытий древнего мира и Индии. (Так, сочинения греческих математиков впервые стали известны в Западной Европе по арабским переводам.) В действительности вклад математиков, писавших на арабском языке, и в частности математиков, принадлежавших к народам современной советской Средней Азии и Кавказа (хорезмийских, узбекских, таджикских, азербайджанских), в развитие науки значительно больше.
         В 1-й половине 9 века Мухаммед бен Муса Хорезми впервые дал изложение алгебры как самостоятельной науки. Термин «алгебра» производят от начала названия сочинения Хорезми «Аль-джебр», по которому европейские математики раннего средневековья познакомились с решением квадратных уравнений. Омар Хайям систематически изучил уравнения третьей степени, дал их классификацию, выяснил условия их разрешимости (в смысле существования положительных корней). Хайям в своём алгебраическом трактате говорит, что он много занимался поисками точного решения уравнений третьей степени. В этом направлении поиски среднеазиатских математиков не увенчались успехом, но им были хорошо известны как геометрические (при помощи конических сечений), так и приближённые численные методы решения. Заимствовав от индийцев десятичную систему счисления с употреблением нуля, математики Средней Азии и Ближнего Востока применяли в больших научных вычислениях по преимуществу шестидесятиричную систему (по-видимому, в связи с шестидесятиричным делением углов в астрономии).
         В связи с астрономическими и геодезическими работами большое развитие получила тригонометрия. Аль-Баттани ввёл в употребление тригонометрические функции синус, тангенс и котангенс, Абу-ль-Вефа — все шесть тригонометрических функций, он же выразил словесно алгебраические зависимости между ними, вычислил таблицы синусов через 10' с точностью до 1/604 и таблицы тангенсов и установил теорему синусов для сферических треугольников. Насирэддин Туси достиг известного завершения разработки сферической тригонометрии, аль-Каши дал систематическое изложение арифметики десятичных дробей, которые справедливо считал более доступными, чем шестидесятиричные. В связи с вопросами извлечения корней аль-Каши сформулировал словесно формулу бинома Ньютона, указал правило образования коэффициентов 0114403123.tif . В «Трактате об окружности» (около 1427) аль-Каши, определяя периметры вписанного и описанного 3228-угольников, нашёл с семнадцатью десятичными знаками. В связи с построением обширных таблиц синусов аль-Каши дал весьма совершенный итерационный метод численного решения уравнений.
         Западная Европа до 16 века. 12—15 века являются для западноевропейской М. по преимуществу периодом усвоения наследства древнего мира и Востока. Тем не менее уже в этот период, не приведший ещё к открытию особенно значительных новых математических фактов, общий характер европейской математической культуры отличается рядом существенных прогрессивных черт, обусловивших возможность стремительного развития М. в последующие века. Высокий уровень требований быстро богатеющей и политически независимой буржуазии итальянских городов привёл к созданию и широкому распространению учебников, соединяющих практическое общее направление с большой обстоятельностью и научностью. Меньше чем через 100 лет после появления в 12 веке первых латинских переводов греческих и арабских математических сочинений Леонардо Пизанский (Фибоначчи) выпускает в свет свои «Книгу об абаке» (1202) и «Практику геометрии» (1220), излагающие арифметику, коммерческую арифметику, алгебру и геометрию. Эти книги имели большой успех. К концу рассматриваемой эпохи (с изобретением книгопечатания) учебники получают ещё более широкое распространение. Основными центрами теоретической научной мысли в это время становятся университеты. Прогресс алгебры как теоретической дисциплины, а не только собрания практических правил для решения задач, сказывается в ясном понимании природы иррациональных чисел как отношений несоизмеримых величин [английский математик Т. Брадвардин (1-я половина 14 века) и Н. Орем (середина 14 века)] и особенно во введении дробных (Н. Орем), отрицательных и нулевых [французский математик Н. Шюке (конец 15 века)] показателей степеней. Здесь же возникают первые, предваряющие следующую эпоху идеи о бесконечно больших и бесконечно малых величинах. Широкий размах научных исследований этой эпохи нашёл отражение не только в многочисленных переводах и изданиях греческих и арабских авторов, но и в таких начинаниях, как составление обширных тригонометрических таблиц, вычисленных с точностью до седьмого знака Региомонтаном (И. Мюллером). Значительно совершенствуется математическая символика (см. Знаки математические). Развиваются научная критика и полемика. Поиски решения трудных задач, поощряемые обычаем публичных состязаний в их решении, приводят к первым доказательствам неразрешимости. Уже Леонардо Пизанский в сочинении «Цветок» (около 1225), в котором собраны предложенные ему и блестяще решенные им задачи, доказал неразрешимость уравнения: х3 + 2x2 + 10x = 20 не только в рациональных числах, но и при помощи простейших квадратичных иррациональностей (вида 0183239336.tif и т. п.).
         Западная Европа в 16 веке. Этот век был первым веком превосходства Западной Европы над древним миром и Востоком. Так было в астрономии (открытие Н. Коперника) и в механике (к концу этого столетия уже появляются первые исследования Г. Галилея), так в целом обстоит дело и в М., несмотря на то, что в некоторых направлениях европейская наука ещё отстаёт от достижений среднеазиатских математиков 15 века и что в действительности большие новые идеи, определившие дальнейшее развитие новой европейской М., возникают лишь в следующем, 17 веке. В 16 же веке казалось, что новая эра в М. начинается с открытием алгебраического решения уравнений третьей (С. Ферро, около 1515, и позднее и независимо Н. Тартальей (См. Тарталья), около 1530; об истории этих открытий см. Кардано формула) и четвёртой (Л. Феррари, 1545) степеней, которое считалось в течение столетий неосуществимым. Дж. Кардано исследовал уравнения третьей степени, открыв так называемый неприводимый случай, в котором действительные корни уравнения выражаются комплексно. Это заставило Кардано, хотя и очень неуверенно, признать пользу вычислений с комплексными числами. Дальнейшее развитие алгебра получила у Ф. Виета — основателя настоящего алгебраического буквенного исчисления (1591) (до него буквами обозначались лишь неизвестные). Учение о перспективе, развивавшееся в геометрии ещё ранее 16 века, излагается немецким художником А. Дюрером (1525). С. Стевин разработал (1585) правила арифметических действий с десятичными дробями.
         Россия до 18 в. Математическое образование в России находилось в 9—13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).
         В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите (см. Славянские цифры). Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.
         Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Арифметические рукописи конца 16—17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практического использования общих правил в рукописях рассматривалось много примеров реального содержания, и излагался так называемый дощаный счет — прототип русских счётов (См. Счёты). Подобным же образом была построена и первая арифметическая часть знаменитой «Арифметики» Л. Ф. Магницкого (См. Магницкий) (1703). В геометрических рукописях, в большинстве своём преследовавших также практические цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.
         3. Период создания математики переменных величин.
         С 17 века начинается существенно новый период развития математики. «Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление...» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20, с. 573). Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрическими фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения (см. Переменные и постоянные величины). Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным предметом изучения. Поэтому на первый план выдвигается понятие Функции, играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в М. в явном виде идею бесконечного, к понятиям Предела, производной (См. Производная), Дифференциала и Интеграла. Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления (См. Дифференциальное исчисление) и интегрального исчисления (См. Интегральное исчисление), позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений (См. Дифференциальные уравнения), и задача интегрирования этих уравнений выдвигается в качестве одной из важнейших задач М. Разыскание неизвестных функций, определённых другого рода условиями, составляет предмет вариационного исчисления (См. Вариационное исчисление). Таким образом, наряду с уравнениями, в которых неизвестными являются числа, появляются уравнения, в которых неизвестны и подлежат определению функции.
         Предмет изучения геометрии также существенно расширяется с проникновением в геометрию идей движения (См. Движение) и преобразования (См. Преобразование) фигур. Геометрия начинает изучать движение и преобразования сами по себе. Например, в проективной геометрии (См. Проективная геометрия) одним из основных объектов изучения являются сами проективные преобразования плоскости или пространства. Впрочем, сознательное развитие этих идей относится лишь к концу 18 века и началу 19 века. Гораздо раньше, с созданием в 17 веке аналитической геометрии (См. Аналитическая геометрия), принципиально изменилось отношение геометрии к остальной М.: был найден универсальный способ перевода вопросов геометрии на язык алгебры и анализа и решения их чисто алгебраическими и аналитическими методами, а с другой стороны, открылась широкая возможность изображения (иллюстрирования) алгебраических и аналитических фактов геометрически, например при графическом изображении функциональных зависимостей (см. Координаты).
         Алгебра 17 и 18 веков в значительной мере посвящена следствиям, вытекающим из возможности изучать левую часть уравнения Р(х) = 0 как функцию переменного х. Этот подход к делу позволил изучить вопрос о числе действительных корней, дать методы их отделения и приближённого вычисления, в комплексной же области привёл французского математика Ж. Д’Аламбера к не вполне строгому, но для математиков 18 века достаточно убедительному доказательству «основной теоремы алгебры» о существовании у любого алгебраического уравнения хотя бы одного корня. Достижения «чистой» алгебры, не нуждающейся в заимствованных из анализа понятиях о непрерывном изменении величин, в 17—18 веках были тоже значительны (достаточно указать здесь на решение произвольных систем линейных уравнений при помощи определителей, разработку теории делимости многочленов, исключения неизвестных и т. д.), однако сознательное отделение собственно алгебраических фактов и методов от фактов и методов математического анализа типично лишь для более позднего времени (2-я половина 19 века — 20 век). В 17—18 веках алгебра в значительной мере воспринималась как первая глава анализа, в которой вместо исследования произвольных зависимостей между величинами и решения произвольных уравнений ограничиваются зависимостями и уравнениями алгебраическими.
         Создание новой М. переменных величин в 17 веке было делом учёных передовых стран Западной Европы, в первую очередь И. Ньютона и Г. Лейбница. В 18 веке одним из основных центров научных математических исследований становится также Петербургская академия наук, где работал ряд крупнейших математиков того времени иностранного происхождения (Л. Эйлер, Д. Бернулли) и постепенно складывается русская математическая школа, блестяще развернувшая свои исследования с начала 19 века.
         17 век. Охарактеризованный выше новый этап развития М. органически связан с созданием в 17 веке математического естествознания, имеющего целью объяснение течения отдельных природных явлений действием общих, математически сформулированных законов природы. На протяжении 17 века действительно глубокие и обширные математические исследования относятся лишь к двум областям естественных наук — к механике [Г. Галилей открывает законы падения тел (1632, 1638), И. Кеплер — законы движения планет (1609, 1619), И. Ньютон — закон всемирного тяготения (1687)] и к оптике [Г. Галилей (1609) и И. Кеплер (1611) сооружают зрительные трубы, И. Ньютон развивает оптику на основе теории истечения, Х. Гюйгенс и Р. Гук — на основе волновой теории]. Тем не менее рационалистическая философия 17 века выдвигает идею универсальности математического метода (Р. Декарт, Б. Спиноза, Г. Лейбниц), придающую особенную яркость устремлениям этой, по преимуществу философской, эпохи в развитии М.
         Серьёзные новые математические проблемы выдвигают перед М. в 17 веке навигация (необходимость усовершенствования часового дела и создания точных хронометров), а также картография, баллистика, гидравлика. Авторы 17 века понимают и любят подчёркивать большое практическое значение М. Опираясь на свою тесную связь с естествознанием, М. 17 века смогла подняться на новый этап развития. Новые понятия, не укладывающиеся в старые формально-логические категории М., получали своё оправдание в соответствии реальным соотношениям действительного мира. Так, например, реальность понятия производной вытекала из реальности понятия скорости в механике; поэтому вопрос заключался не в том, можно ли логически оправдать это понятие, а лишь в том, как это сделать.
         Математические достижения 17 века начинаются открытием Логарифмов (Дж. Непер, опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою «Геометрию», содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. В тесной связи с возможностью представить корни уравнения Р(х) = 0 точками пересечения кривой y = Р(х) с осью абсцисс в алгебре исследуются действительные корни уравнения любой степени (Р. Декарт, И. Ньютон, М. Ролль). Исследования П. Ферма о максимумах и минимумах и разыскании касательных к кривым уже содержат в себе по существу приёмы дифференциального исчисления, но самые эти приёмы ещё не выделены и не развиты. Другим источником анализа бесконечно малых является развитый И. Кеплером (1615) и Б. Кавальери (1635) «неделимых» метод (См. Неделимых метод), примененный ими к определению объёмов тел вращения и ряду других задач. Так, в геометрической форме были по существу созданы начала дифференциального и интегрального исчисления.
         Параллельно развивается учение о бесконечных Рядах. Свойства простейших рядов, начиная с геометрической прогрессии, изучил Дж. Валлис (1685). Н. Меркатор (1668) получил разложение In(1 + x) в степенной ряд. И. Ньютон нашёл (1665—69) формулу бинома для любого показателя, степенные ряды функций ex, sinx, arc sinx. В дальнейшем развитии учения о бесконечных рядах приняли участие почти все математики 17 века (Дж. Валлис, Х. Гюйгенс, Г. Лейбниц, Я. Бернулли и другие).
         С созданием координатного метода и распространением представлений о направленных механических величинах (скорости, ускорения) понятие отрицательного числа приобрело полную наглядность и ясность. Наоборот, комплексные числа, по-прежнему оставаясь побочным продуктом алгебраического аппарата, продолжали быть по преимуществу лишь предметом бесплодных споров.
         К последней трети 17 века относится открытие дифференциального и интегрального исчисления в собственном смысле слова. В отношении публикации приоритет этого открытия принадлежит Г. Лейбницу, давшему развёрнутое изложение основных идей нового исчисления в статьях, опубликованных в 1682—86. В отношении же времени фактического получения основных результатов имеются все основания считать приоритет принадлежащим И. Ньютону, который к основным идеям дифференциального и интегрального исчисления пришёл в течение 1665—66. «Анализ с помощью уравнений» И. Ньютона в 1669 был передан им в рукописи английским математикам И. Барроу и Дж. Коллинзу и получил широкую известность среди английских математиков. «Метод флюксий» — сочинение, в котором И. Ньютон дал вполне законченное систематическое изложение своей теории, — был написан в 1670—71 (издан в 1736). Г. Лейбниц же начал свои исследования по анализу бесконечно малых лишь в 1673. И. Ньютон и Г. Лейбниц впервые в общем виде рассмотрели основные для нового исчисления операции дифференцирования и интегрирования функций, установили связь между этими операциями (так называемая формула Ньютона — Лейбница) и разработали для них общий единообразный алгоритм. Подход к делу у И. Ньютона и Г. Лейбница, однако, различен. Для И. Ньютона исходными понятиями являются понятия «флюенты» (переменной величины) и её «флюксий» (скорости её изменения). Прямой задаче нахождения флюксий и соотношений между флюксиями по заданным флюентам (дифференцирование и составление дифференциальных уравнений) И. Ньютон противопоставлял обратную задачу нахождения флюент по заданным соотношениям между флюксиями, то есть сразу общую задачу интегрирования дифференциальных уравнений; задача нахождения первообразной появляется здесь как частный случай интегрирования дифференциального уравнения
         dy/dx = f(x).
        Такая точка зрения была вполне естественна для И. Ньютона как создателя математического естествознания: его исчисление флюксий являлось просто отражением той идеи, что элементарные законы природы выражаются дифференциальными уравнениями, а предсказание хода описываемых этими уравнениями процессов требует их интегрирования (см. Флюксий исчисление). Для Г. Лейбница в центре внимания находился вопрос о переходе от алгебры конечного к алгебре бесконечно малых; интеграл воспринимался прежде всего как сумма бесконечно большого числа бесконечно малых, а основным понятием дифференциального исчисления являлись дифференциалы — бесконечно малые приращения переменных величин (наоборот, И. Ньютон, вводя соответствующее понятие «момента», стремился в более поздних работах от него освободиться). С публикации работ Г. Лейбница в континентальной Европе начался период интенсивной коллективной работы над дифференциальным и интегральным исчислением, интегрированием дифференциальных уравнений и геометрическими приложениями анализа, в которой принимали участие, кроме самого Г. Лейбница, Я. Бернулли, И. Бернулли, Г. Лопиталь и другие. Здесь создаётся современный стиль математической работы, при котором полученные результаты немедленно публикуются в журнальных статьях и уже очень скоро после опубликования используются в исследованиях других учёных.
         Кроме аналитической геометрии, развивается в тесной связи с алгеброй и анализом Дифференциальная геометрия, в 17 веке закладываются основы дальнейшего развития чистой геометрии главным образом в направлении создания основных понятий проективной геометрии. Из других открытий 17 века следует отметить исследования по теории чисел (Б. Паскаль, П. Ферма); разработку основных понятий комбинаторики (П. Ферма, Б. Паскаль, Г. Лейбниц); первые работы по теории вероятностей (П. Ферма, Б. Паскаль), увенчавшиеся в конце века результатом принципиального значения — открытием простейшей формы Больших чисел закона (Я. Бернулли, опубликован в 1713). Необходимо указать ещё на построение Б. Паскалем (1641) и Г. Лейбницем (1673—74) первых счётных машин, оставшееся надолго, впрочем, без практических последствий.
         18 век. В начале 18 века общий стиль математических исследований постепенно меняется. Успех 17 века, обусловленный в основном новизной метода, создавался главным образом смелостью и глубиной общих идей, что сближало М. с философией. К началу 18 века развитие новых областей М., созданных в 17 веке, достигло того уровня, при котором дальнейшее продвижение вперёд стало требовать в первую очередь искусства в овладении математическим аппаратом и изобретательности в разыскании неожиданных обходных решений трудных задач. Из двух величайших математиков 18 века Л. Эйлер является наиболее ярким представителем этой виртуозной тенденции, а Ж. Лагранж, быть может, уступая Л. Эйлеру в количестве и разнообразии решенных задач, соединил блестящую технику с широкими обобщающими концепциями, типичными для французской математической школы 2-й половины 18 века, тесно связанной с большим философским движением французских просветителей и материалистов. Увлечение необычайной силой аппарата математического анализа приводит, естественно, к вере в возможность его чисто автоматического развития, в безошибочность математических выкладок даже тогда, когда в них входят символы, лишённые смысла. Если при создании анализа бесконечно малых сказывалось неумение логически справиться с идеями, имевшими полную наглядную убедительность, то теперь открыто проповедуется право вычислять по обычным правилам лишённые непосредственно смысла математические выражения, не опираясь ни на наглядность, ни на какое-либо логическое оправдание законности таких операций. Из старшего поколения в эту сторону всё больше склоняется Г. Лейбниц, который в 1702 по поводу интегрирования рациональных дробей при помощи их разложения на мнимые выражения говорит о «чудесном вмешательстве идеального мира» и т. п. Более реалистически настроенный Л. Эйлер не говорит о чудесах, но воспринимает законность операций с мнимыми числами и с расходящимися рядами как эмпирический факт, подтверждаемый правильностью получаемых при помощи подобных преобразований следствий. Хотя работа по рациональному уяснению основ анализа бесконечно малых была начата, систематическое проведение логического обоснования анализа было осуществлено лишь в 19 веке.
         Если виднейшие математики 17 века очень часто были в то же время философами или физиками-экспериментаторами, то в 18 веке научная работа математика становится самостоятельной профессией. Математики 18 века — это люди из разных кругов общества, рано выделившиеся своими математическими способностями, с быстро развивающейся академической карьерой (Л. Эйлер, происходя из пасторской семьи в Базеле, в возрасте 20 лет был приглашен адъюнктом в Петербургскую академию наук, 23 лет становится там же профессором, 39 лет — председателем физико-математического класса Берлинской академии наук; Ж. Лагранж — сын французского чиновника, 19 лет — профессор в Турине, 30 лет — председатель физико-математического класса Берлинской академии наук; П. Лаплас — сын французского крестьянина, 22 лет — профессор военной школы в Париже, 36 лет — член Парижской академии наук). При этом, однако, математическое естествознание (механика, математическая физика) и технические применения М. остаются в сфере деятельности математиков. Л. Эйлер занимается вопросами кораблестроения и оптики, Ж. Лагранж создаёт основы аналитической механики, П. Лаплас, считавший себя в основном математиком, также является крупнейшим астрономом и физиком своего времени и так далее.
         М. 18 века обогатилась многими выдающимися результатами. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематической науки. Ж. Лагранж дал (1769, опубликовано в 1771) общее решение неопределённых уравнений второй степени. Л. Эйлер установил (1772, опубликован в 1783) закон взаимности для квадратичных вычетов (См. Квадратичный вычет). Он же привлек (1737, 1748, 1749) для изучения простых чисел дзета-функцию (См. Дзета-функция), чем положил начало аналитической теории чисел.
         При помощи разложений в непрерывные дроби Л. Эйлер доказал (1737, опубликовано в 1744) иррациональность е и e2, а И. Ламберт (1766, опубликовано в 1768) — иррациональность . В алгебре Г. Крамер (1750) ввёл для решения систем линейных уравнений определители. Л. Эйлер рассматривал как эмпирически установленный факт существование у каждого алгебраического уравнения корня вида 0161612019.tif . Постепенно укореняется убеждение, что вообще мнимые выражения (не только в алгебре, но и в анализе) всегда приводимы к виду 0114874073.tif . Ж. Д’Аламбер (См. Д'Аламбер) доказал (1748), что модуль многочлена не может иметь минимума, отличного от нуля (так называемая лемма Д’Аламбера), считая это за доказательство существования корня у любого алгебраического уравнения. Формулы А. Муавра и Л. Эйлера, связывающие показательную и тригонометрическую функции комплексных аргументов, привели к дальнейшему расширению применений комплексных чисел в анализе. И. Ньютон, Дж. Стирлинг, Л. Эйлер и П. Лаплас заложили основы конечных разностей исчисления (См. Конечных разностей исчисление). Б. Тейлор открыл (1715) свою формулу разложения произвольной функции в степенной ряд. У исследователей 18 века, особенно у Л. Эйлера, ряды становятся одним из самых мощных и гибких орудий анализа. С Ж. Д’Аламбера начинается серьёзное изучение условий сходимости рядов. Л. Эйлер, Ж. Лагранж и особенно А. Лежандр заложили основы исследования эллиптических интегралов — первого вида неэлементарных функций, подвергнутого глубокому специальному изучению. Большое внимание уделялось дифференциальным уравнениям, в частности Л. Эйлер дал (1739, опубликован в 1743) первый метод решения линейного дифференциального уравнения любого порядка с постоянными коэффициентами, Ж. Д’Аламбер рассматривал системы дифференциальных уравнений, Ж. Лагранж и П. Лаплас развивали общую теорию линейных дифференциальных уравнений любого порядка. Л. Эйлер, Г. Монж и Ж. Лагранж заложили основы общей теории дифференциальных уравнений с частными производными первого порядка, а Л. Эйлер, Г. Монж и П. Лаплас — второго порядка. Специальный интерес представляет введение в анализ разложения функций в тригонометрические ряды, так как в связи с этой задачей между Л. Эйлером, Д. Бернулли, Ж. Д’Аламбером, Г. Монжем и Ж. Лагранжем развернулась полемика по вопросу о понятии функции, подготовившая фундаментальные результаты 19 века о соотношении между аналитическим выражением и произвольным заданием функции. Наконец, новым отделом анализа, возникшим в 18 веке, является вариационное исчисление, созданное Л. Эйлером и Ж. Лагранжем. А. Муавр, Я. Бернулли, П. Лаплас на основе отдельных достижений 17—18 веков заложили начала вероятностей теории (См. Вероятностей теория).
         В области геометрии Л. Эйлер привёл к завершению систему элементарной аналитической геометрии. В работах Л. Эйлера, А. Клеро, Г. Монжа и Ж. Менье были заложены основы дифференциальной геометрии пространственных кривых и поверхностей. И. Ламберт развил теорию перспективы, а Г. Монж придал окончательную форму начертательной геометрии (См. Начертательная геометрия).
         Из приведённого обзора видно, что М. 18 века, основываясь на идеях 17 века, по размаху работы далеко превзошла предыдущие века. Этот расцвет М. был связан по преимуществу с деятельностью академий; университеты играли меньшую роль. Отдалённость крупнейших математиков от университетского преподавания возмещалась той энергией, с которой все они, начиная с Л. Эйлера и Ж. Лагранжа, писали учебники и обширные, включающие отдельные исследования, трактаты.
         III. Современная математика
         Все созданные в 17 и 18 веках разделы математического анализа продолжали с большой интенсивностью развиваться в 19 и 20 веках. Чрезвычайно расширился за это время и круг их применений к задачам, выдвигаемым естествознанием и техникой. Однако, помимо этого количественного роста, с последних лет 18 века и в начале 19 века в развитии М. наблюдается и ряд существенно новых черт.
         1. Расширение предмета математики
         Накопленный в 17 и 18 веках огромный фактический материал привёл к необходимости углублённого логического анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрической интерпретации комплексных чисел (См. Комплексные числа) [датский землемер К. Вессель, 1799, и французский математик Ж. Арган (Арганд), 1806], доказательство неразрешимости в радикалах общего алгебраического уравнения пятой степени (Н. Абель, 1824), разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским (См. Лобачевский) (1826, опубликовано в 1829—30) и Я. Больяй (1832) неевклидовой геометрии, работы К. Гаусса (1827) по внутренней геометрии поверхностей — типичные примеры наметившихся на рубеже 18 и 19 веков новых тенденций в развитии М.
         Связь М. с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, но также из внутренних потребностей самой М. Таково в основном было развитие теории функций комплексного переменного, занявшей в начале и середине 19 века центральное положение во всём математическом анализе.
         Другим замечательным примером теории, возникшей в результате внутреннего развития самой М., явилась «воображаемая геометрия» Лобачевского (см. Лобачевского геометрия).
         Можно привести ещё один пример того, как начавшийся в конце 18 века и 1-й половине 19 века пересмотр с более общих точек зрения добытых ранее конкретных математических фактов нашёл во 2-й половине 19 века и в 20 веке мощную поддержку в новых запросах естествознания. Теория групп (См. Группа) ведёт своё начало с рассмотрения Ж. Лагранжем (1771) групп подстановок в связи с проблемой разрешимости в радикалах алгебраических уравнений высших степеней. Э. Галуа (1830—32, опубликовано в 1832, 1846) при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраических уравнений любой степени. В середине 19 века А. Кэли дал общее «абстрактное» определение группы. С. Ли разработал, исходя из общих проблем геометрии, теорию непрерывных групп (См. Непрерывная группа). И лишь после этого Е. С. Федоров (См. Фёдоров) (1890) и немецкий учёный А. Шёнфлис (1891) установили, что теоретико-групповым закономерностям подчинено строение кристаллов; ещё позднее теория групп становится мощным средством исследования в квантовой физике.
         В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного исчисления (См. Векторное исчисление) и тензорного исчисления (См. Тензорное исчисление). Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа (См. Функциональный анализ) и тесно связывается с потребностями современной физики.
         Таким образом, в результате как внутренних потребностей М., так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых М., чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, всё разнообразие форм пространств любого числа измерений и т. п. При таком широком понимании терминов «количественные отношения» и «пространственные формы» приведённое в начале статьи определение М. применимо и на новом, современном этапе её развития.
         Существенная новизна начавшегося в 19 веке этапа развития М. состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, например, введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие М. потребовало выработки приёмов сознательного и планомерного создания новых геометрических систем, новых «алгебр» с «некоммутативным» или даже «неассоциативным» умножением и так далее по мере возникновения в них потребности. Так, вопрос о том, не следует ли, например, ради анализа и синтеза того или иного типа релейно-контактных схем создать новую «алгебру» с новыми правилами действий, является не вызывающим особого удивления делом повседневной научно-технической практики. Но трудно переоценить важность той перестройки всего склада математического мышления, которая для этого должна была произойти в течение 19 века. С этой, идейной стороны наиболее значительным среди открытий начала 19 века явилось открытие неевклидовой геометрии Лобачевского. Именно на примере этой геометрии была преодолена вера в незыблемость освященных тысячелетним развитием М. аксиом, была понята возможность создания существенно новых математических теорий путём правильно выполненной абстракции от налагавшихся ранее ограничений, не имеющих внутренней логической необходимости, и, наконец, было обнаружено, что подобная абстрактная теория может получить со временем всё более широкие, вполне конкретные применения.
         Чрезвычайное расширение предмета М. привле
Мультимедийная энциклопедия
Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные конкретные интерпретации; например, соотношение 2 + 3 = 4 + 1 соответствует утверждению, что две и три книги составляют столько же книг, сколько четыре и одна. Любое соотношение типа 2 + 3 = 4 + 1, т.е. отношение между чисто математическими объектами без ссылки на какую бы то ни было интерпретацию из физического мира, называется абстрактным. Абстрактный характер математики позволяет использовать ее при решении самых разных проблем. Например, алгебра, рассматривающая операции над числами, позволяет решать задачи, выходящие за рамки арифметики. Более конкретным разделом математики является геометрия, основная задача которой - изучение размеров и форм объектов. Сочетание алгебраических методов с геометрическими приводит, с одной стороны, к тригонометрии (первоначально посвященной изучению геометрических треугольников, а теперь охватывающей значительно больший круг вопросов), а с другой стороны - к аналитической геометрии, в которой геометрические тела и фигуры исследуются алгебраическими методами. Существуют несколько разделов высшей алгебры и геометрии, обладающих более высокой степенью абстракции и не занимающихся изучением обычных чисел и обычных геометрических фигур; самая абстрактная из геометрических дисциплин называется топологией. Математический анализ занимается изучением величин, изменяющихся в пространстве или во времени, и опирается на два основных понятия - функцию и предел, которые не встречаются в более элементарных разделах математики. Первоначально математический анализ состоял из дифференциального и интегрального исчислений, но теперь включает в себя и другие разделы. Различают две основные области математики - чистую математику, в которой акцент делается на дедуктивные рассуждения, и прикладную математику. Термин "прикладная математика" иногда относят к тем ветвям математики, которые созданы специально для того, чтобы удовлетворить запросы и требования науки, а иногда - к тем разделам различных наук (физики, экономики и т.п.), которые используют математику как средство решения своих задач. Многие распространенные заблуждения в отношении математики возникают в результате смешения этих двух толкований "прикладной математики". Арифметика может служить примером прикладной математики в первом смысле, а бухгалтерский учет - во втором. Вопреки широко распространенному мнению, математика продолжает быстро развиваться. Журнал "Математическое обозрение" ("Mathematical Review") публикует ежегодно ок. 8000 кратких резюме статей, содержащих последние результаты - новые математические факты, новые доказательства старых фактов и даже сведения о совершенно новых областях математики. Существующая ныне тенденция в математическом образовании заключается в стремлении познакомить учащихся с современными, более абстрактными математическими идеями на более ранних стадиях преподавания математики. См. также <<МАТЕМАТИКИ ИСТОРИЯ>>. Математика - один из краеугольных камней цивилизации, однако очень немногие люди имеют представление о современном состоянии дел в этой науке. Математика за последние сто лет претерпела огромные изменения, касающиеся как предмета, так и методов исследования. В данной статье мы попытаемся дать общее представление об основных этапах эволюции современной математики, главными результатами которой можно считать, с одной стороны, увеличение разрыва между чистой и прикладной математикой, а с другой - полное переосмысление традиционных областей математики. РАЗВИТИЕ МАТЕМАТИЧЕСКОГО МЕТОДА Рождение математики. Около 2000 до н.э. было замечено, что в треугольнике со сторонами в 3, 4 и 5 единиц длины один из углов равен 90° (это наблюдение позволяло легко строить прямой угол для практических надобностей). Заметили ли тогда соотношение 52 = 32 + 42? Относительно этого мы не располагаем никакими сведениями. Через несколько веков было открыто общее правило: в любом треугольнике ABC с прямым углом при вершине A и сторонами b = АС и c = AB, между которыми заключен этот угол, и противолежащей ему стороной a = BC справедливо соотношение a2 = b2 + c2. Можно сказать, что наука начинается тогда, когда масса отдельных наблюдений объясняется одним общим законом; следовательно, открытие "теоремы Пифагора" можно рассматривать как один из первых известных примеров подлинно научного достижения. Но еще более важное значение для науки вообще и для математики в частности имеет то, что наряду с формулировкой общего закона появляются попытки его доказать, т.е. показать, что он с необходимостью следует из других геометрических свойств. Одно из восточных "доказательств" особенно наглядно в своей простоте: четыре треугольника, равные данному, вписаны в квадрат BCDE так, как показано на чертеже. Площадь квадрата a2 оказывается разделенной на четыре равных треугольника общей площадью 2bc и квадрат AFGH площадью (b - c)2. Таким образом, a2 = (b - c)2 + 2bc = (b2 + c2 - 2bc) + 2bc = b2 + c2. Поучительно сделать еще один шаг и выяснить точнее, какие "предыдущие" свойства предполагаются известными. Наиболее очевидный факт заключается в том, что, поскольку треугольники BAC и BEF точно, без пробелов и наложения, "подогнаны" вдоль сторон BA и BF, это означает, что два угла при вершинах B и С в треугольнике ABС составляют вместе угол в 90° и поэтому сумма всех трех его углов равна 90° + 90° = 180°. В приведенном выше "доказательстве" используется также формула (bc/2) для площади треугольника ABC с углом в 90° при вершине A. Фактически были использованы и другие допущения, но и сказанного достаточно, чтобы мы могли наглядно увидеть существенный механизм математического доказательства - дедуктивное рассуждение, позволяющее с помощью чисто логических аргументов (на основе надлежащим образом подготовленного материала, в нашем примере - разбиения квадрата) вывести из известных результатов новые свойства, как правило, не следующие непосредственно из имеющихся данных. Аксиомы и методы доказательства. Одной из фундаментальных особенностей математического метода является процесс создания с помощью тщательно выстроенных чисто логических аргументов цепочки утверждений, в которой каждое последующее звено соединено с предыдущими. Первое достаточно очевидное соображение состоит в том, что в любой цепочке должно быть первое звено. Это обстоятельство стало очевидно грекам, когда они приступили к систематизации свода математических аргументов в 7 в. до н.э. Для осуществления этого замысла грекам понадобилось ок. 200 лет, и сохранившиеся документы позволяют составить лишь примерное представление о том, как именно они действовали. Точной информацией мы располагаем лишь об окончательном результате исследований - знаменитых Началах Евклида (ок. 300 до н.э.). Евклид начинает с перечисления исходных положений, из которых все остальные выводятся чисто логическим путем. Эти положения называются аксиомами или постулатами (термины практически взаимозаменяемые); они выражают либо весьма общие и несколько расплывчатые свойства объектов любого рода, например "целое больше части", либо какие- то конкретные математические свойства, например, что для любых двух точек существует единственная соединяющая их прямая. У нас нет никакой информации и о том, придавали ли греки некий более глубокий смысл или значимость "истинности" аксиом, хотя существуют кое-какие намеки, что, прежде чем принять те или иные аксиомы, греки некоторое время их обсуждали. У Евклида и его последователей аксиомы представлены лишь как исходные пункты для построения математики без всяких комментариев об их природе. Что касается методов доказательства, то они, как правило, сводились к прямому использованию ранее доказанных теорем. Иногда, правда, логика рассуждений оказывалась более сложной. Мы упомянем здесь излюбленный метод Евклида, вошедший в повседневную практику математики, - косвенное доказательство, или доказательство от противного. В качестве элементарного примера доказательства от противного покажем, что шахматную доску, из которой вырезаны два угловых поля, расположенных на противоположных концах диагонали, невозможно покрыть костями домино, каждая из которых равна двум полям. (Предполагается, что каждое поле шахматной доски должно быть покрыто только один раз.) Предположим, что верно противоположное ("противное") утверждение, т.е. что доску можно покрыть костями домино. Каждая кость покрывает одно черное и одно белое поле, поэтому независимо от расположения костей домино они покрывают равное число черных и белых полей. Однако из-за того, что два угловых поля удалены, шахматная доска (на которой первоначально было столько же черных полей, сколько белых) имеет полей одного цвета на два больше, чем полей другого цвета. Это означает, что наше исходное предположение не может быть истинным, так как приводит к противоречию. А поскольку противоречащие друг другу суждения не могут быть ложными одновременно (если одно из них ложно, то противоположное истинно), наше исходное предположение должно быть истинным, ибо противоречащее ему предположение ложно; следовательно, шахматную доску с двумя вырезанными угловыми полями, расположенными по диагонали, невозможно покрыть костями домино. Итак, чтобы доказать некоторое утверждение, мы можем предположить, что оно ложно, и вывести из этого предположения противоречие с каким-нибудь другим утверждением, истинность которого известна. Прекрасный пример доказательства от противного, ставший одной из вех в развитии древнегреческой математики, - доказательство того, что - не рациональное число, т.е. непредставимо в виде дроби p/q, где p и q - целые числа. Если , то 2 = p2/q2, откуда p2 = 2q2. Предположим, что существуют два целых числа p и q, для которых p2 = 2q2. Иначе говоря, мы предполагаем, что существует целое число, квадрат которого вдвое больше квадрата другого целого числа. Если какие-нибудь целые числа удовлетворяют этому условию, то одно из них должно быть меньше всех других. Сосредоточим внимание на наименьшем из таких чисел. Пусть это будет число p. Так как 2q2 - четное число и p2 = 2q2, то число p2 должно быть четным. Так как квадраты всех нечетных чисел нечетны, а квадрат p2 четен, значит само число p должно быть четным. Иначе говоря, число p вдвое больше некоторого целого числа r. Так как p = 2r и p2 = 2q2, имеем: (2r)2 = 4r2 = 2q2 и q2 = 2r2. Последнее равенство имеет тот же вид, что и равенство p2 = 2q2, и мы можем, повторяя те же рассуждения, показать, что число q четно и что существует такое целое число s, что q = 2s. Но тогда q2 = (2s)2 = 4s2, и, поскольку q2 = 2r2, мы заключаем, что 4s2 = 2r2 или r2 = 2s2. Так мы получаем второе целое число, которое удовлетворяет условию, что его квадрат вдвое больше квадрата другого целого числа. Но тогда p не может быть наименьшим таким числом (поскольку r = p/2), хотя первоначально мы предполагали, что оно - наименьшее из таких чисел. Следовательно, наше исходное предположение ложно, так как приводит к противоречию, и поэтому не существует таких целых чисел p и q, для которых p2 = 2q2 (т.е. таких, что ). А это означает, что число не может быть рациональным. От Евклида до начала 19 в. На протяжении этого периода математика существенно преобразилась в результате трех новаций. (1) В процессе развития алгебры был изобретен способ символической записи, позволявший представлять в сокращенном виде все более сложные соотношения между величинами. В качестве примера тех неудобств, которые возникли бы, не будь такой "скорописи", попробуем передать словами соотношение (a + b)2 = a2 + 2ab + b2: "Площадь квадрата со стороной, равной сумме сторон двух данных квадратов, равна сумме их площадей вместе с удвоенной площадью прямоугольника, стороны которого равны сторонам данных квадратов". (2) Создание в первой половине 17 в. аналитической геометрии, давшей возможность любую задачу классической геометрии свести к некоторой алгебраической задаче. (3) Создание и развитие в период с 1600 по 1800 исчисления бесконечно малых, позволявшего легко и систематически решать сотни задач, связанных с понятиями предела и непрерывности, лишь очень немногие из которых были решены древнегреческими математиками. Более подробно эти ветви математики рассматриваются в статьях <<АЛГЕБРА>>; <<АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ>>; <<МАТЕМАТИЧЕСКИЙ АНАЛИЗ>>; <<ГЕОМЕТРИИ ОБЗОР>>. Начиная с 17 в. постепенно проясняется вопрос, который до тех пор оставался неразрешимым. Что такое математика? До 1800 ответ был достаточно простым. В то время четких границ между различными науками не существовало, математика была частью "натуральной философии" - систематического изучения природы методами, предложенными великими реформаторами эпохи Возрождения и начала 17 в. - Галилеем (1564-1642), Ф.Бэконом (1561-1626) и Р.Декартом (1596-1650). Считалось, что у математиков имеется своя собственная область исследования - числа и геометрические объекты и что математики не пользуются экспериментальным методом. Однако Ньютон и его последователи изучали механику и астрономию с помощью аксиоматического метода по аналогии с тем, как была изложена геометрия у Евклида. В более общем плане было признано, что любая наука, в которой результаты эксперимента представимы с помощью чисел или систем чисел, становится областью приложения математики (в физике это представление утвердилось лишь в 19 в.). Области экспериментальной науки, которые подверглись математической обработке, часто называют "прикладной математикой"; это очень неудачное название, так как ни по классическим, ни по современным стандартам в этих приложениях не существует (в строгом смысле) подлинно математических аргументов, поскольку в них предметом исследования являются нематематические объекты. После того как данные эксперимента переведены на язык чисел или уравнений (такой "перевод" зачастую требует большой находчивости со стороны "прикладного" математика), появляется возможность широкого применения математических теорем; затем результат подвергается обратному переводу и сравнивается с наблюдениями. То, что к процессу такого рода применяется термин "математика", служит одним из источников нескончаемых недоразумений. В "классические" времена, о которых сейчас идет речь, такого рода недоразумений не существовало, поскольку одни и те же люди являлись и "прикладными", и "чистыми" математиками, занимаясь одновременно и проблемами математического анализа или теории чисел, и проблемами динамики или оптики. Однако усилившаяся специализация и тенденция к обособлению "чистой" и "прикладной" математик значительно ослабили ранее существовавшую традицию универсальности, и ученые, которые, подобно Дж.фон Нейману (1903-1957), были способны вести активную научную деятельность как в прикладной, так и в чистой математике, стали скорее исключением, чем правилом. Какова природа математических объектов - чисел, точек, линий, углов, поверхностей и т.д., существование которых мы считали чем-то само собою разумеющимся? Что означает применительно к таким объектам понятие "истина"? На эти вопросы в классический период были даны вполне определенные ответы. Разумеется, ученые той эпохи отчетливо понимали, что в мире наших ощущений нет таких вещей, как "бесконечно протяженная прямая" или "не имеющая размеров точка" Евклида, как нет "чистых металлов", "монохроматического света", "теплоизолированных систем" и т.д., которыми оперируют в своих рассуждениях экспериментаторы. Все эти понятия - "платоновские идеи", т.е. своего рода порождающие модели эмпирических понятий, хотя и радикально иного характера. Тем не менее молчаливо предполагалось, что физические "образы" идей могут быть сколь угодно близки к самим идеям. В той мере, в какой вообще можно что-либо утверждать относительно близости объектов к идеям, говорят, что "идеи" являются, так сказать, "предельными случаями" физических объектов. С этой точки зрения, аксиомы Евклида и выводимые из них теоремы выражают свойства "идеальных" объектов, которым должны соответствовать предсказуемые экспериментальные факты. Например, измерение оптическими методами углов треугольника, образованного тремя точками в пространстве, в "идеальном случае" должно дать сумму, равную 180°. Иначе говоря, аксиомы поставлены на один уровень с физическими законами, и поэтому их "истинность" воспринимается так же, как истинность физических законов; т.е. логические следствия из аксиом подлежат проверке путем сравнения с экспериментальными данными. Разумеется, согласие можно достичь лишь в пределах ошибки, связанной и с "несовершенным" характером измерительного прибора, и "несовершенной природой" измеряемого объекта. Однако всегда предполагается, что если законы "истинны", то усовершенствования процессов измерения в принципе позволяют сделать ошибку измерения сколь угодно малой. На протяжении 18 в. находилось все больше подтверждений того, что все следствия, полученные из основных аксиом, в особенности в астрономии и механике, согласуются с данными экспериментов. А поскольку эти следствия получались с использованием существовавшего в то время математического аппарата, достигнутые успехи способствовали укреплению мнения об истинности аксиом Евклида, которая, как говорил Платон, "ясна каждому" и не подлежит обсуждению. Сомнения и новые надежды. Неевклидова геометрия. Среди постулатов, приведенных Евклидом, один был настолько неочевиден, что даже первые ученики великого математика считали его слабым местом в системе Начал. Аксиома, о которой идет речь, утверждает, что через точку, лежащую вне данной прямой, можно провести только одну прямую, параллельную данной прямой. Большинство геометров считали, что аксиому о параллельных можно доказать с помощью других аксиом и что Евклид сформулировал утверждение о параллельных как постулат просто потому, что ему не удалось придумать такое доказательство. Но, хотя лучшие математики пытались разрешить проблему параллельных, никому из них не удалось превзойти Евклида. Наконец, во второй половине 18 в. были предприняты попытки доказать постулат Евклида о параллельных от противного. Предположили, что аксиома о параллельных ложна. Априори постулат Евклида мог оказаться ложным в двух случаях: если через точку вне данной прямой невозможно провести ни одной параллельной; или если через нее можно провести несколько параллельных. Оказалось, что первая априорная возможность исключается другими аксиомами. Приняв вместо традиционной аксиомы о параллельных новую аксиому (о том, что через точку вне данной прямой можно провести несколько прямых, параллельных данной), математики пытались вывести из нее утверждение, противоречащее другим аксиомам, но потерпели неудачу: сколько они ни пытались извлекать следствий из новой "антиевклидовой", или "неевклидовой" аксиомы, противоречие так и не появилось. Наконец, независимо друг от друга Н.И.Лобачевский (1793-1856) и Я. Бойяи (1802-1860) поняли, что постулат Евклида о параллельных недоказуем, или, иначе говоря, в "неевклидовой геометрии" противоречие не появится. С появлением неевклидовой геометрии сразу же возникло несколько философских проблем. Поскольку претензия на априорную необходимость аксиом отпала, оставался единственный способ проверки их "истинности" - экспериментальный. Но, как позднее заметил А. Пуанкаре (1854-1912), в описании любого явления скрыто такое множество физических допущений, что ни один эксперимент не может дать убедительного доказательства истинности или ложности математической аксиомы. Кроме того, даже если допустить, что наш мир является "неевклидовым", следует ли из этого, что вся евклидова геометрия ложна? Насколько известно, ни один математик никогда не рассматривал такую гипотезу всерьез. Интуиция подсказывала, что и евклидова и неевклидова геометрии являются примерами полноценной математики. Математические "монстры". Неожиданно к таким же выводам пришли совершенно с другой стороны - были открыты объекты, повергшие математиков 19 в. в шок и получившие название "математических монстров". Это открытие имеет непосредственное отношение к весьма тонким вопросам математического анализа, возникшим лишь в середине 19 в. Трудности возникли при попытке найти точный математический аналог экспериментальному понятию кривой. То, что было сутью понятия "непрерывного движения" (например, острия чертежного пера, движущегося по листу бумаги), подлежало точному математическому определению, и эта цель была достигнута, когда понятие непрерывности обрело строгий математический смысл (см. также <<КРИВАЯ>>) . Интуитивно казалось, что "кривая" в каждой своей точке имеет как бы направление, т.е. в общем случае в окрестности каждой своей точки кривая ведет себя почти так же, как прямая. (С другой стороны, нетрудно представить, что кривая имеет конечное число угловых точек, "изломов", как многоугольник.) Это требование могло быть сформулировано математически, а именно, предполагалось существование касательной к кривой, и до середины 19 в. считалось, что "кривая" имеет касательную почти во всех своих точках, быть может, за исключением некоторых "особых" точек. Поэтому открытие "кривых", не имевших касательной в любой своей точке, вызвало настоящий скандал (см. также <<ФУНКЦИЙ ТЕОРИЯ>>). (Читатель, знакомый с тригонометрией и аналитической геометрией, может легко проверить, что кривая, задаваемая уравнением y = x sin (1/x) , не имеет касательной в начале координат, но определить кривую, не имеющую касательной ни в одной своей точке, значительно сложнее.) Несколько позднее был получен куда более "патологический" результат: удалось построить пример кривой, которая полностью заполняет квадрат. С тех пор были изобретены сотни таких "монстров", противоречивших "здравому смыслу". Следует подчеркнуть, что существование столь необычных математических объектов следует из основных аксиом столь же строго и логически безупречно, как существование треугольника или эллипса. Поскольку математические "монстры" не могут соответствовать никакому экспериментальному объекту, и единственное возможное заключение состоит в том, что мир математических "идей" гораздо богаче и необычнее, чем можно было ожидать, и лишь очень немногие из них имеют соответствия в мире наших ощущений. Но если математические "монстры" логически следуют из аксиом, то можно ли по-прежнему считать аксиомы истинными? Новые объекты. Приведенные выше результаты получили подтверждение еще с одной стороны: в математике, главным образом в алгебре, один за другим стали возникать новые математические объекты, представлявшие собой обобщения понятия числа. Обычные целые числа достаточно "интуитивны", и придти к экспериментальному понятию дроби совсем не трудно (хотя нельзя не признать, что операция деления единицы на несколько равных частей и выбор нескольких из них по своей природе отличаются от процесса счета). После того как выяснилось, что число непредставимо в виде дроби, греки были вынуждены рассматривать иррациональные числа, корректное определение которых с помощью бесконечной последовательности приближений рациональными числами принадлежит к наивысшим достижениям человеческого разума, но вряд ли соответствует чему-нибудь реальному в нашем физическом мире (где любое измерение неизменно сопряжено с ошибками). Тем не менее введение иррациональных чисел происходило более или менее в духе "идеализации" физических понятий. А что сказать об отрицательных числах, которые медленно, встречая большое сопротивление, стали входить в научный обиход в связи с развитием алгебры? Со всей определенностью можно утверждать, что не было никаких готовых физических объектов, отправляясь от которых мы с помощью процесса прямой абстракции могли бы выработать понятие отрицательного числа, и в преподавания элементарного курса алгебры приходится вводить множество вспомогательных и достаточно сложных примеров (ориентированные отрезки, температуры, долги и т.д.), чтобы пояснить, что такое отрицательные числа. Такое положение очень далеко от понятия, "ясного каждому", как того требовал Платон от идей, лежащих в основе математики, и нередко приходится встречать выпускников колледжей, для которых все еще остается загадкой правило знаков (-a)(-b) = ab. См. также <<ЧИСЛО>>. Еще хуже обстоит дело с "мнимыми", или "комплексными" числами, поскольку в них входит "число" i, такое, что i2 = -1, что является явным нарушением правила знаков. Тем не менее математики с конца 16 в. не колеблясь производят вычисления с комплексными числами, как если бы они "имели смысл", хотя 200 лет назад не могли дать определения этих "объектов" или интерпретировать их с помощью какой-либо вспомогательной конструкции, как, например, были интерпретированы с помощью направленных отрезков отрицательные числа. (После 1800 было предложено несколько интерпретаций комплексных чисел, самая известная - с помощью векторов на плоскости.) Современная аксиоматика. Переворот произошел во второй половине 19 в. И хотя он не сопровождался принятием официальных заявлений, в действительности речь шла именно о провозглашении своего рода "декларации независимости". Конкретнее - о провозглашении де факто декларации независимости математики от внешнего мира. С этой точки зрения, математические "объекты", если вообще имеет смысл говорить об их "существовании", - чистое порождение разума, и имеют ли они какие-нибудь "соответствия" и допускают ли какую-нибудь "интерпретацию" в физическом мире, для математики несущественно (хотя сам по себе этот вопрос интересен). "Истинные" утверждения о таких "объектах" - все те же логические следствия из аксиом. Но теперь аксиомы следует рассматривать как совершенно произвольные, и поэтому отпадает необходимость в их "очевидности" или выводимости из повседневного опыта посредством "идеализации". На практике полная свобода ограничена разного рода соображениями. Разумеется, "классические" объекты и их аксиомы остаются без изменений, но теперь их нельзя считать единственными объектами и аксиомами математики, и в повседневную практику вошла привычка выбрасывать или переделывать аксиомы так, чтобы была возможность использовать их различными способами, как это было сделано при переходе от евклидовой геометрии к неевклидовой. (Именно таким образом были получены многочисленные варианты "неевклидовых" геометрий, отличных от евклидовой геометрии и от геометрии Лобачевского - Бойяи; например, имеются неевклидовы геометрии, в которых не существует параллельных прямых.) Хотелось бы особенно подчеркнуть одно обстоятельство, следующее из нового подхода к математическим "объектам": все доказательства должны опираться исключительно на аксиомы. Если мы вспомним об определении математического доказательства, то подобное высказывание может показаться повтором. Однако это правило редко соблюдалось в классической математике из-за "интуитивной" природы ее объектов или аксиом. Даже в Началах Евклида, при всей их кажущейся "строгости", многие аксиомы не формулируются явно и многие свойства либо молчаливо предполагаются, либо вводятся без достаточного обоснования. Чтобы поставить евклидову геометрию на прочную основу, понадобился критический пересмотр самих ее начал. Вряд ли стоит говорить о том, что педантичный контроль за мельчайшими деталями доказательства является следствием появления "монстров", научивших современных математиков соблюдать крайнюю осторожность в выводах. Самое безобидное и "самоочевидное" утверждение о классических объектах, например утверждение о том, что кривая, соединяющая точки, расположенные по разные стороны от прямой, непременно пересекает эту прямую, в современной математике требует строгого формального доказательства. Возможно, покажется парадоксальным утверждение, что именно из-за своей приверженности аксиомам современная математика служит наглядным примером того, какой должна быть любая наука. Тем не менее такой подход иллюстрирует характерную особенность одного из наиболее фундаментальных процессов научного мышления - получения точной информации в ситуации неполного знания. Научное исследование некоторого класса объектов предполагает, что особенности, позволяющие отличать одни объекты от других, умышленно предаются забвению, а сохраняются лишь общие черты рассматриваемых объектов. То, что выделяет математику из общего ряда наук, заключается в неукоснительном следовании этой программе во всех ее пунктах. Считается, что математические объекты полностью определены аксиомами, используемыми в теории этих объектов; или, по словам Пуанкаре, аксиомы служат "замаскированными определениями" тех объектов, к которым они относятся. СОВРЕМЕННАЯ МАТЕМАТИКА Хотя теоретически возможно существование любых аксиом, до настоящего времени было предложено и исследовано лишь небольшое число аксиом. Обычно в ходе развития одной или нескольких теорий замечают, что какие-то схемы доказательства повторяются в более или менее аналогичных условиях. После того как свойства, используемые в общих схемах доказательств, обнаружены, их формулируют в виде аксиом, а следствия из них выстраивают в общую теорию, не имеющую прямого отношения к тем конкретным контекстам, из которых были абстрагированы аксиомы. Получаемые при этом общие теоремы применимы к любой математической ситуации, в которой существуют системы объектов, удовлетворяющие соответствующим аксиомам. Повторяемость одних и тех же схем доказательства в различных математических ситуациях свидетельствует о том, что мы имеем дело с различными конкретизациями одной и той же общей теории. Это означает, что после соответствующей интерпретации аксиомы этой теории в каждой ситуации становятся теоремами. Любое свойство, выводимое из аксиом, будет справедливо во всех этих ситуациях, но необходимость в отдельном доказательстве для каждого случая отпадает. В таких случаях говорят, что математические ситуации обладают одной и той же математической "структурой". Мы пользуемся представлением о структуре на каждом шагу в нашей повседневной жизни. Если термометр показывает 10° С и бюро прогнозов предсказывает повышение температуры на 5° С, мы без всяких вычислений ожидаем температуру в 15° С. Если книга открыта на 10-й странице и нас просят заглянуть на 5 страниц дальше, мы не колеблясь открываем ее на 15-й странице, не отсчитывая промежуточных страниц. В обоих случаях мы полагаем, что сложение чисел дает правильный результат независимо от их интерпретации - в виде температуры или номеров страниц. Нам нет нужды учить одну арифметику для термометров, а другую - для номеров страниц (хотя мы пользуемся особой арифметикой, имея дело с часами, в которой 8 + 5 = 1, так как часы обладают другой структурой, чем страницы книги). Интересующие математиков структуры отличаются несколько более высокой сложностью, в чем нетрудно убедиться на примерах, разбору которых посвящены два следующих раздела данной статьи. В одном из них речь пойдет о теории групп и математических понятиях структур и изоморфизмов. Теория групп. Чтобы лучше понять процесс, обрисованный выше в общих чертах, возьмем на себя смелость заглянуть в лабораторию современного математика и присмотреться к одному из его основных инструментов - теории групп (см. также <<АЛГЕБРА АБСТРАКТНАЯ>>). Группой называется набор (или "множество") объектов G, на котором определена операция, ставящая в соответствие любым двум объектам или элементам a, b из G, взятым в указанном порядке (первым - элемент a, вторым - элемент b), третий элемент c из G по строго определенному правилу. Для краткости обозначим этот элемент a*b; звездочка (*) означает операцию композиции двух элементов. Эта операция, которую мы назовем групповым умножением, должна удовлетворять следующим условиям: (1) для любых трех элементов a, b, c из G выполняется свойство ассоциативности: a* (b*c) = (a*b) *c; (2) в G существует такой элемент e, что для любого элемента a из G имеет место соотношение e*a = a*e = a; этот элемент e называется единичным или нейтральным элементом группы; (3) для любого элемента a из G найдется такой элемент a', называемый обратным или симметричным к элементу a, что a*a' = a'*a = e. Если эти свойства принять за аксиомы, то логические следствия из них (независимые от каких-либо других аксиом или теорем) в совокупности образуют то, что принято называть теорией групп. Вывести раз и навсегда эти следствия оказалось очень полезно, поскольку группы широко применяются во всех разделах математики. Из тысяч возможных примеров групп выберем лишь несколько наиболее простых. (а) Дроби p/q, где p и q - произвольные целые числа і1 (при q = 1 мы получаем обыкновенные целые числа). Дроби p/q образуют группу относительно группового умножения (p/q) *(r/s) = (pr)/(qs). Свойства (1), (2), (3) следуют из аксиом арифметики. Действительно, *(t/u) = (prt)/(qsu) = (p/q)*. Единичным элементом служит число 1 = 1/1, так как (1/1)*(p/q) = (1*p)/(1*q) = p/q. Наконец, элементом, обратным к дроби p/q, является дробь q/p, так как (p/q)*(q/p) = (pq)/(pq) = 1. (b) Рассмотрим в качестве G набор из четырех целых чисел 0, 1, 2, 3, а в качестве a*b - остаток от деления a + b на 4. Результаты таким образом введенной операции представлены в табл. 1 (элемент a*b стоит на пересечении строки a и столбца b). Нетрудно проверить, что свойства (1)- (3) выполняются, а единичным элементом служит число 0. (с) Выберем в качестве G набор чисел 1, 2, 3, 4, а в качестве a*b - остаток от деления ab (обычного произведения) на 5. В результате получим табл. 2. Легко проверить, что свойства (1)-(3) выполняются, а единичным элементом служит 1. (d) Четыре объекта, например четыре числа 1, 2, 3, 4, можно расположить в ряд 24 способами. Каждое расположение можно наглядно представить как преобразование, переводящее "естественное" расположение в заданное; например, расположение 4, 1, 2, 3 получается в результате преобразования S: 1 -> 4, 2 -> 1, 3 -> 2, 4 -> 3, которое можно записать в более удобном виде Для любых двух таких преобразований S, T мы определим S*T как преобразование, которое получится в результате последовательного возможных преобразования образуют группу; ее единичным элементом служит стрелок в определении S на противоположные; например, если Нетрудно заметить, что в первых трех примерах a*b = b*a; в таких случаях говорят, что группа или групповое умножение коммутативны. С другой отличается от S*T. Группа из примера (d) является частным случаем т.н. симметрической группы, в сферу приложений которой входят, среди прочего, методы решения алгебраических уравнений и поведение линий в спектрах атомов. Группы из примеров (b) и (c) играют важную роль в теории чисел; в примере (b) число 4 можно заменить любым целым числом n, а числа от 0 до 3 - числами от 0 до n - 1 (при n = 12 мы получим систему чисел, которые стоят на циферблатах часов, о чем мы упоминали выше); в примере (с) число 5 можно заменить любым простым числом р, а числа от 1 до 4 - числами от 1 до p - 1. Структуры и изоморфизм. Предыдущие примеры показывают, сколь разнообразной может быть природа объектов, образующих группу. Но на самом деле в каждом случае все сводится к одному и тому же сценарию: из свойств множества объектов мы рассматриваем лишь те, которые превращают это множество в группу (пример неполноты знания). В таких случаях говорят, что мы рассматриваем групповую структуру, заданную выбранным нами групповым умножением. Еще один пример структуры - т.н. структура порядка. Множество E наделено структурой порядка, или упорядочено, если между элементами a и b, принадлежащими E, задано некоторое отношение, которое мы обозначим R (a,b). (Такое отношение должно иметь смысл для любой пары элементов из Е, но в общем случае оно ложно для одних пар и истинно для других, например, отношение 7 < 3 ложно для пары чисел 3 и 7, а отношение 3 < 7 для той же пары чисел истинно.) Отношение обладает следующими свойствами: (1) R (a,a) истинно для каждого а, принадлежащего Е; (2) из R (a,b) и R (b,a) следует, что a = b; (3) из R (a,b) и R (b,c) следует R (a,c). Приведем несколько примеров из огромного числа разнообразных упорядоченных множеств. (а) E состоит из всех целых чисел, R (a,b) - отношение "а меньше или равно b". (b) Е состоит из всех целых чисел >1, R (a,b) - отношение "а делит b или равно b". (c) Е состоит из всех кругов на плоскости, R (a,b) - отношение "круг a содержится в b или совпадает с b". В качестве последнего примера структуры упомянем структуру метрического пространства; такая структура задается на множестве Е, если каждой паре элементов a и b, принадлежащих E, можно поставить в соответствие число d (a,b) і 0, удовлетворяющее следующим свойствам: (1) d (a,b) = 0 в том и только том случае, когда a = b; (2) d (b,a) = d (a,b); (3) d (a,c) Ј d (a,b) + d (b,c) для любых трех заданных элементов a, b, c из E. Приведем примеры метрических пространств: (a) обычное "трехмерное" пространство, где d (a,b) - обычное (или "евклидово") расстояние; (b) поверхность сферы, где d (a,b) - длина наименьшей дуги круга, соединяющей две точки a и b на сфере; (c) любое множество E, для которого d (a,b) = 1, если a № b; d (a,a) = 0 для любого элемента a. Точное определение понятия структуры довольно сложно. Не вдаваясь в подробности, можно сказать, что на множестве Е задана структура определенного типа, если между элементами множества Е (а иногда и другими объектами, например числами, которые играют вспомогательную роль) заданы отношения, удовлетворяющие некоторому фиксированному набору аксиом, характеризующему структуру рассматриваемого типа. Выше мы привели аксиомы трех типов структур. Разумеется, существуют многие другие типы структур, теории которых полностью разработаны. С понятием структуры тесно связаны многие абстрактные понятия; назовем лишь одно из наиболее важных - понятие изоморфизма. Вспомним пример групп (b) и (c), приведенных в предыдущем разделе. Нетрудно проверить, что от табл. 1 к табл. 2 можно перейти с помощью соответствия 0 -> 1, 1 -> 2, 2 -> 4, 3 -> 3. В этом случае мы говорим, что данные группы изоморфны. В общем случае две группы G и G' изоморфны, если между элементами группы G и элементами группы G' можно установить такое взаимно однозначное соответствие a <-> a', что если c = a*b, то c' = a'*b' для соответствующих элементов G'. Любое утверждение из теории групп, справедливое для группы G, остается в силе и для группы G', и наоборот. Алгебраически группы G и G' неразличимы. Читатель без труда убедится, что точно так же можно определить два изоморфных упорядоченных множества или два изоморфных метрических пространства. Можно показать, что понятие изоморфизма распространяется на структуры любого типа. КЛАССИФИКАЦИЯ Старая и новая классификации математики. Понятие структуры и связанные с ним другие понятия заняли в современной математике центральное место как с чисто "технической", так и с философской и методологической точек зрения. Общие теоремы основных типов структур служат чрезвычайно мощными инструментами математической "техники". Всякий раз, когда математику удается показать, что изучаемые им объекты удовлетворяют аксиомам определенного типа структур, он тем самым доказывает, что все теоремы теории структуры этого типа применимы к конкретным объектам, изучением которых он занимается (без этих общих теорем он, весьма вероятно, упустил бы из виду конкретные их варианты или был бы вынужден обременять свои рассуждения излишними допущениями). Аналогично, если доказано, что две структуры изоморфны, то число теорем немедленно удваивается: каждая теорема, доказанная для одной из структур, сразу же дает соответствующую теорему для другой. Неудивительно поэтому, что существуют весьма сложные и трудные теории, например "теория поля классов" в теории чисел, главная цель которых - доказательство изоморфизма структур. С философской точки зрения, широкое использование структур и изоморфизмов демонстрирует основную особенность современной математики - то обстоятельство, что "природа" математических "объектов" не имеет особого значения, значимы лишь отношения между объектами (разновидность принципа неполноты знания). Наконец, нельзя не упомянуть о том, что понятие структуры позволило по- новому классифицировать разделы математики. До середины 19 в. они различались в соответствии с предметом исследования. Арифметика (или теория чисел) имела дело с целыми числами, геометрия - с прямыми, углами, многоугольниками, окружностями, площадями и т.д. Алгебра занималась почти исключительно методами решения численных уравнений или систем уравнений, аналитическая геометрия разрабатывала методы преобразования геометрических задач в эквивалентные алгебраические задачи. Круг интересов еще одного важнейшего раздела математики, получившего название "математический анализ", включал в основном дифференциальное и интегральное исчисления и различные их приложения к геометрии, алгебре и даже теории чисел. Количество этих приложений увеличивалось, возрастало и их значение, что привело к дроблению математического анализа на подразделы: теорию функций, дифференциальные уравнения (обыкновенные и в частных производных), дифференциальную геометрию, вариационное исчисление и т.д. Для многих современных математиков такой подход напоминает историю классификации животных: когда-то и морская черепаха, и тунец считались рыбами, поскольку обитали в воде и имели сходные черты. Современный подход научил нас видеть не только то, что лежит на поверхности, но и заглядывать глубже и пытаться распознавать фундаментальные структуры, лежащие за обманчивой внешностью математических объектов. С этой точки зрения, значение имеет исследование наиболее важных типов структур. Вряд ли в нашем распоряжении имеется полный и окончательный список этих типов; некоторые из них были открыты в последние 20 лет, и есть все основания ожидать в будущем новых открытий. Однако мы уже имеем представление о многих основных "абстрактных" типах структур. (Они "абстрактны" по сравнению с "классическими" объектами математики, хотя и те вряд ли можно назвать "конкретными"; дело скорее в степени абстракции.) Известные структуры можно классифицировать по входящим в них отношениям или по их сложности. С одной стороны, существует обширный блок "алгебраических" структур, частным случаем которых является, например, групповая структура; среди других алгебраических структур назовем кольца и поля (см. также <<АЛГЕБРА АБСТРАКТНАЯ>>). Раздел математики, занимающийся изучением алгебраических структур, получил название "современной алгебры" или "абстрактной алгебры", в отличие от обычной, или классической, алгебры. Значительная часть евклидовой геометрии, неевклидова геометрия и аналитическая геометрия также вошли в состав новой алгебры. На том же уровне общности находятся два других блока структур. Один из них, называемый общей топологией, включает в себя теории типов структур, частным случаем которых является структура метрического пространства (см. <<ТОПОЛОГИЯ>>; <<АБСТРАКТНЫЕ ПРОСТРАНСТВА>>). Третий блок составляют теории структур порядка и их расширений. "Расширение" структуры заключается в добавлении к уже имеющимся аксиомам новых. Например, если к аксиомам группы добавить в качестве четвертой аксиомы свойство коммутативности a*b = b*a, то мы получим структуру коммутативной (или абелевой) группы. Из этих трех блоков два последних до недавнего времени находились в сравнительно стабильном состоянии, а блок "современная алгебра" стремительно разрастался, подчас в неожиданных направлениях (например, получила развитие целая отрасль, получившая название "гомологической алгебры"). За пределами т.н. "чистых" типов структур лежит другой уровень - "смешанных" структур, например алгебраических и топологических, вместе с новыми связывающими их аксиомами. Было изучено множество таких комбинаций, большинство из которых распадаются на два обширных блока - "топологическую алгебру" и "алгебраическую топологию". Вместе взятые, эти блоки составляют весьма солидную по объему "абстрактную" область науки. Многие математики надеются с помощью новых средств лучше понять классические теории и решить трудные проблемы. Действительно, при соответствующем уровне абстрагирования и обобщения задачи древних могут предстать в новом свете, что позволит найти их решения. Огромные фрагменты классического материала оказались под властью новой математики и были преобразованы или слились с другими теориями. Остаются обширные области, в которых современные методы проникли не столь глубоко. Примерами могут служить теория дифференциальных уравнений и значительная часть теории чисел. Весьма вероятно, что существенный прогресс в этих областях будет достигнут после того, как будут открыты и тщательно изучены новые типы структур. ФИЛОСОФСКИЕ ТРУДНОСТИ Еще древние греки отчетливо понимали, что математическая теория должна быть свободна от противоречий. Это означает, что невозможно вывести как логическое следствие из аксиом утверждение Р и его отрицание не-P. Однако, поскольку считалось, что математические объекты имеют соответствия в реальном мире, а аксиомы являются "идеализациями" законов природы, ни у кого не возникало сомнений в непротиворечивости математики. При переходе от классической математики к математике современной проблема непротиворечивости приобрела иной смысл. Свобода выбора аксиом любой математической теории должна быть заведомо ограничена условием непротиворечивости, но можно ли быть уверенным в том, что это условие окажется выполненным? Мы уже упоминали о понятии множества. Это понятие всегда использовалось более или менее явно в математике и логике. Во второй половине 19 в. элементарные правила обращения с понятием множества были частично систематизированы, кроме того, были получены некоторые важные результаты, составившие содержание т.н. теории множеств (см. также МНОЖЕСТВ ТЕОРИЯ), ставшей как бы субстратом всех остальных математических теорий. Начиная с античности и вплоть до 19 в. существовали опасения относительно бесконечных множеств, например нашедшие отражение в знаменитых парадоксах Зенона Элейского (5 в. до н.э.). Эти опасения носили отчасти метафизический характер, а отчасти были вызваны трудностями, связанными с понятием измерения величин (например, длины или времени). Устранить эти трудности удалось только после того, как в 19 в. были строго определены основные понятия математического анализа. К 1895 все страхи были развеяны, и казалось, что математика покоится на незыблемом фундаменте теории множеств. Но в следующее десятилетие возникли новые аргументы, которые, по-видимому, показывали внутреннюю противоречивость теории множеств (и всей остальной математики). Новые парадоксы были очень простыми. Первый из них - парадокс Рассела - можно рассмотреть в простой версии, известной под названием "парадокс брадобрея". В некотором городке брадобрей бреет всех жителей, которые не бреются сами. Кто бреет самого брадобрея? Если брадобрей бреется сам, то он бреет не только тех жителей, которые не бреются сами, но и одного жителя, который бреется сам; если же он сам не бреется, то он не бреет всех жителей городка, которые не бреются сами. Парадокс этого типа возникает всякий раз, когда рассматривается понятие "множество всех множеств". Хотя этот математический объект кажется весьма естественным, рассуждения о нем быстро приводят к противоречиям. Еще более показателен парадокс Берри. Рассмотрим множество всех русских фраз, содержащих не более семнадцати слов; число слов русского языка конечно, поэтому конечно и число таких фраз. Выберем среди них такие, которые однозначно задают какое-нибудь целое число, например: "Наибольшее нечетное число, меньшее десяти". Число таких фраз также конечно; следовательно, конечно и множество определяемых ими целых чисел. Обозначим конечное множество этих чисел через D. Из аксиом арифметики следует, что существуют целые числа, не принадлежащие D, и что среди этих чисел существует наименьшее число n. Это число n однозначно определяется фразой: "Наименьшее целое число, которое не может быть определено фразой, состоящей не более чем из семнадцати русских слов". Но эта фраза содержит ровно семнадцать слов. Следовательно, она определяет число n, которое должно принадлежать D, и мы приходим к парадоксальному противоречию. Интуиционисты и формалисты. Шок, вызванный парадоксами теории множеств, породил самые различные реакции. Некоторые математики были настроены весьма решительно и высказывали мнение, что математика с самого начала развивалась в неверном направлении и должна базироваться на совершенно другом фундаменте. Описать точку зрения подобных "интуиционистов" (как они стали себя называть) сколько-нибудь точно не представляется возможным, так как они отказывались сводить свои взгляды к чисто логической схеме. С точки зрения интуиционистов, неправильно применять логические процессы к интуитивно непредставимым объектам. Единственными интуитивно ясными объектами являются натуральные числа 1, 2, 3,... и конечные множества натуральных чисел, "построенные" по точно заданным правилам. Но даже к таким объектам интуиционисты не разрешали применять все дедукции классической логики. Например, они не признавали, что для любого утверждения Р истинно либо Р, либо не-Р. Располагая столь ограниченными средствами, они легко избегали "парадоксов", но при этом выбрасывали за борт не только всю современную математику, но и значительную часть результатов классической математики, а для тех, что еще оставались, необходимо было найти новые, более сложные доказательства. Подавляющее большинство современных математиков не согласились с доводами интуиционистов. Математики-неинтуиционисты заметили, что аргументы, применяемые в парадоксах, значительно отличаются от тех, что используются в обычной математической работе с теорией множеств, и поэтому следовало бы исключить такого рода аргументы как незаконные, не подвергая риску существующие математические теории. Другое наблюдение заключалось в том, что в "наивной" теории множеств, существовавшей до появления "парадоксов", не подвергался сомнению смысл терминов "множество", "свойство", "отношение" - подобно тому как в классической геометрии не подвергался сомнению "интуитивный" характер обычных геометрических понятий. Следовательно, можно действовать так же, как это было в геометрии, а именно отбросить все попытки обращения к "интуиции" и принять за исходный пункт теории множеств систему точно сформулированных аксиом. Однако неочевидно, каким образом можно лишить такие слова, как "свойство" или "отношение", их обычного смысла; между тем это необходимо сделать, если мы желаем исключить такие рассуждения, как парадокс Берри. Метод состоит в воздержании от использования обыденного языка при формулировке аксиом или теорем; только предложения, построенные в соответствии с явной системой жестких правил, допускаются в качестве "свойств" или "отношений" в математике и входят в формулировку аксиом. Такой процесс называется "формализацией" математического языка (во избежание недоразумений, возникающих из-за неоднозначностей обычного языка, рекомендуется сделать еще один шаг и заменить сами слова специальными символами в формализованных предложениях, например заменить связку "и" символом &, связку "или" - символом Ъ, "существует" - символом $ и т.д.). Математиков, отвергавших методы, предложенные интуиционистами, стали называть "формалистами". Однако на исходный вопрос так и не было дано ответа. Свободна ли от противоречий "аксиоматическая теория множеств"? Новые попытки доказательств непротиворечивости "формализованных" теорий были предприняты в 1920-х годах Д.Гильбертом (1862-1943) и его школой и получили название "метаматематики". По существу, метаматематика представляет собой раздел "прикладной математики", где объектами, к которым применяются математические рассуждения, являются предложения формализованной теории и их расположение внутри доказательств. Эти предложения надлежит рассматривать лишь как материальные комбинации символов, производимые по некоторым установленным правилам, без каких бы то ни было ссылок на возможный "смысл" этих символов (если таковой существует). Хорошей аналогией может служить игра в шахматы: символы соответствуют фигурам, предложения - различным позициям на доске, а логические выводы - правилам передвижения фигур. Для установления непротиворечивости формализованной теории достаточно показать, что в этой теории ни одно доказательство не заканчивается утверждением 0 № 0. Однако можно возразить против использования математических аргументов в "метаматематическом" доказательстве непротиворечивости математической теории; если бы математика была противоречивой, то математические аргументы утратили бы всякую силу, и мы бы оказались в ситуации порочного круга. Чтобы ответить на эти возражения, Гильберт допустил к использованию в метаматематике весьма ограниченные математические рассуждения того типа, который считают допустимым интуиционисты. Однако вскоре К.Гедель показал (1931), что непротиворечивость арифметики невозможно доказать столь ограниченными средствами, если она действительно непротиворечива (рамки настоящей статьи не позволяют нам изложить остроумный метод, с помощью которого был получен этот замечательный результат, и дальнейшую историю метаматематики). Резюмируя с формалистской точки зрения сложившуюся проблемную ситуацию, мы должны признать, что она далека от завершения. Использование понятия множества ограничивалось оговорками, которые специально вводились, чтобы избежать известных парадоксов, и нет никаких гарантий, что в аксиоматизированной теории множеств не возникнут новые парадоксы. Тем не менее ограничения аксиоматической теории множеств не помешали рождению новых жизнеспособных теорий. МАТЕМАТИКА И РЕАЛЬНЫЙ МИР Несмотря на заявления о независимости математики, никто не станет отрицать, что математика и физический мир связаны друг с другом. Разумеется, остается в силе математический подход к решению проблем классической физики. Верно и то, что в весьма важной области математики, а именно в теории дифференциальных уравнений, обыкновенных и в частных производных, процесс взаимообогащения физики и математики достаточно плодотворен. Математика полезна при интерпретации явлений микромира. Однако новые "приложения" математики существенно отличаются от классических. Одним из важнейших инструментов физики стала теория вероятностей, которая раньше применялась главным образом в теории азартных игр и страховом деле. Математические объекты, которые физики ставят в соответствие "атомным состояниям", или "переходам", носят весьма абстрактный характер и были введены и исследованы математиками задолго до появления квантовой механики. Следует добавить, что после первых успехов возникли серьезные трудности. Это произошло в тот момент, когда физики пытались применить математические идеи к более тонким аспектам квантовой теории; тем не менее многие физики по-прежнему с надеждой взирают на новые математические теории, полагая, что те помогут им в решении новых проблем. Математика - наука или искусство? Даже если мы включим в "чистую" математику теорию вероятностей или математическую логику, выяснится, что в настоящее время другие науки используют менее 50% известных математических результатов. Что же мы должны думать об оставшейся половине? Иначе говоря, какие мотивы стоят за теми областями математики, которые не имеют отношения к решению физических проблем? типичном представителе такого рода теорем. Другим примером может служить теорема, доказанная Ж.-Л.Лагранжем (1736-1813). Вряд ли найдется математик, который бы не назвал ее "важной" или "красивой". Теорема Лагранжа утверждает, что любое целое число, большее или равное единице, может быть представлено в виде суммы квадратов не более чем четырех чисел; например, 23 = 32 + 32 + 22 + 12 . При существующем ныне положении вещей немыслимо, чтобы этот результат мог пригодиться при решении какой-нибудь экспериментальной задачи. Правда, физики имеют дело с целыми числами сегодня гораздо чаще, чем в прошлом, но целые числа, которыми они оперируют, всегда ограничены (они редко превышают несколько сотен); следовательно, такая теорема, как теорема Лагранжа, может быть "полезна" только в том случае, если применять ее к целым числам, не переходящим некоторой границы. Но стоит нам ограничить формулировку теоремы Лагранжа, как она сразу перестает быть интересной для математика, поскольку вся притягательная сила этой теоремы заключается в ее применимости ко всем целым числам. (Существует великое множество утверждений о целых числах, которые можно проверить с помощью компьютеров для очень больших чисел; но, коль скоро общего доказательства не найдено, они остаются гипотетическими и не интересны профессиональным математикам.) Сосредоточенность на темах, далеких от непосредственных приложений, не является чем-то необычным для ученых, работающих в любой области, будь то астрономия или биология. Однако, в то время как экспериментальный результат можно уточнить и улучшить, математическое доказательство всегда носит окончательный характер. Именно поэтому трудно удержаться от искушения рассматривать математику, или по крайней мере ту ее часть, которая не имеет отношения к "реальности", как искусство. Математические проблемы не навязываются извне, и, если принять современную точку зрения, мы совершенно свободны в выборе материала. При оценке некоторых математических работ у математиков нет "объективных" критериев, и они вынуждены полагаться на собственный "вкус". Вкусы же сильно меняются в зависимости от времени, страны, традиций и отдельных личностей. В современной математике существуют мода и "школы". В настоящее время имеются три такие "школы", которые мы для удобства назовем "классицизмом", "модернизмом" и "абстракционизмом". Чтобы лучше понять различия между ними, проанализируем различные критерии, которыми пользуются математики, когда оценивают теорему или группу теорем. (1) По общему мнению, "красивый" математический результат должен быть нетривиальным, т.е. не должен быть очевидным следствием аксиом или ранее доказанных теорем; в доказательстве должна использоваться какая-то новая идея или остроумно применены старые представления. Иначе говоря, для математика важен не сам результат, а процесс преодоления трудностей, с которыми он столкнулся при его получении. (2) У любой математической проблемы имеется своя история, так сказать "родословная", которая следует той же общей схеме, по которой развивается история любой науки: после первых успехов может пройти определенное время, прежде чем будет найден ответ на поставленный вопрос. Когда решение получено, история на этом не заканчивается, ибо начинаются известные процессы расширения и обобщения. Например, упоминавшаяся выше теорема Лагранжа приводит к вопросу о представлении любого целого числа в виде суммы кубов, четвертых, пятых степеней и т.д. Так возникает "проблема Варинга", до сих пор не получившая окончательного разрешения. Кроме того, если нам повезет, решенная нами проблема окажется связанной с одной или несколькими фундаментальными структурами, а это, в свою очередь, приведет к новым проблемам, связанным с этими структурами. Даже если первоначальная теория в конце концов "умирает", она, как правило, оставляет после себя многочисленные живые побеги. Современные математики столкнулись с такой необозримой россыпью задач, что, даже если бы прервалась всякая связь с экспериментальной наукой, их решение заняло бы еще несколько столетий. (3) Каждый математик согласится с тем, что, когда перед ним возникает новая задача, его обязанность - решить ее любыми возможными средствами. Когда задача касается классических математических объектов (классицисты редко имеют дело с другими типами объектов), классицисты пытаются решить ее, используя только классические средства, в то время как другие математики вводят более "абстрактные" структуры с тем, чтобы использовать общие теоремы, имеющие отношение к задаче. Это различие подходов не ново. Начиная с 19 в. математики делятся на "тактиков", стремящихся найти чисто силовое решение проблемы, и на "стратегов", склонных к обходным маневрам, дающим им возможность сокрушить противника малыми силами. (4) Существенным элементом "красоты" теоремы является ее простота. Разумеется, поиск простоты свойствен всей научной мысли. Но экспериментаторы готовы примириться с "некрасивыми решениями", лишь бы задача была решена. Точно так же и в математике классицисты и абстракционисты не очень обеспокоены появлением "патологических" результатов. С другой стороны, модернисты заходят так далеко, что усматривают в появлении "патологий" в теории симптом, свидетельствующий о несовершенстве основополагающих понятий.
Современная Энциклопедия
МАТЕМАТИКА (от греческого mathema - знание, учение, наука), наука о количественных отношениях и пространственных формах окружающего нас мира. Понимание самостоятельного положения математики как особой науки возникло в Древней Греции в 6 - 5 вв. до нашей эры. Математика объединяет комплекс дисциплин: арифметика (теория чисел), алгебра, геометрия, математический анализ (дифференциальное исчисление и интегральное исчисление), теория множеств, теория вероятностей и многое другое. Математика характеризуется: а) высокой степенью абстрактности ее понятий (точки - без размеров, линии - без толщины, множества любых предметов и т.п.); б) высокой степенью их общности (например, в алгебре буква обозначает любое число, в математической логике рассматриваются произвольные высказывания и т.п.). Абстрактность и общность понятий математики позволяют один и тот же математический аппарат применять в различных науках.
Орфографический словарь Лопатина
матем`атика, матем`атика, -и
Словарь Даля
жен. наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. - чистая, занимается величинами отвлеченно; - прикладная, прилагает первую к делу, к предметам. Математика делится на арифметику и геометрию, первая располагает цифрами, вторая протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика (включающая в себе и алгебру) добивается выразить все общими формулами, уравнениями, без помощи чертежа. Прикладная математика, по предмету зовется: механикою, оптикою, геодезиею и пр. Математический, -тичный, к науке этой относящийся. Доказать что математически, цифрами, счислением, бесспорно, как дважды два. -тичность жен. свойство всего, что подлежит математике, цифры и величины. Математик муж. сведущий в науке этой.
Словарь Ожегова
МАТЕМ’АТИКА, -и, жен. Наука, изучающая величины, количественные отношения и пространственные формы. Высшая м. Прикладная м.
прил. математический, -ая, -ое. Математическая задача. М. ум. (перен.: точный, ясный).
Словарь Ушакова
МАТЕМ’АТИКА, математики, мн. нет, ·жен. (·греч. mathematike). Цикл наук, изучающих величины и пространственные формы (арифметика, алгебра, геометрия, тригонометрия и т.д.). Чистая математика. Прикладная математика. Высшая математика.
Толковый словарь Ефремовой
[математика]
ж.
1)
а) Научная дисциплина о пространственных формах и количественных отношениях действительного мира.
б) Учебный предмет, содержащий теоретические основы данной научной дисциплины.
в) разг. Учебник, излагающий содержание данного учебного предмета.
2) перен. разг. Точный, простой расчет.
Социологический Энциклопедичечкий Словарь
МАТЕМАТИКА (от греч. mathematike) - англ. mathematics; нем. Mathematik. Система наук, изучающих количественные отношения и пространственные формы реальности.
Философский энциклопедический словарь
МАТЕМАТИКА – наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о правилах исчисления этих объектов. Чистая математика занимается величинами как таковыми, прикладная математика имеет дело с измеримыми и исчислимыми явлениями, т.е. с именованными числами. Чистая математика в состоянии вывести, просто «вычислить», свои результаты с помощью некоторых простых понятий и предположений, «аксиом», посредством чисто логических заключений, с правильностью которых должно согласиться каждое здравомыслящее существо («математическая» достоверность, строгая аргументация). Математические построения .относятся к сфере идеального бытия (см. БЫТИЕ) и априорного понимания; они становятся лишь носителями апостериорного познания, поскольку могут быть «применены» к эмпирическим взглядам (Кант). На развитие философии математики, т.е. вопроса о ее собственной сущности и ее действительно высших положениях (см. АКСИОМА) и вопроса о ее значении для теории познания и логики, в новейшее время влияли и влияют Фреге, Рассел, Гильберт, Брауер, или т. н. (математическое) «исследование основ» (см. ЛОГИСТИКА). Оно обнаруживает «кризис принципов», углублению которого препятствуют (математический) формализм (Гильберт) и (математический) интуитивизм (Брауэр); это исследование пространно объясняет кризис, но не устраняет его полностью. Оно способствует также важному пониманию того, что в математике существуют неразрешимые вопросы (теорема Геделя). С др. стороны, для обширной области математики может быть приведено окончательное доказательство ее непротиворечивости (Гильберт, Генцен).
Научнотехнический Энциклопедический Словарь
МАТЕМАТИКА, наука, изучающая свойства чисел, пространства и формы, а также делающая дедуктивные предположения по поводу абстрактных категорий. Часто делится на чистую математику, рассматривающую исключительно абстрактные доказательства аксиом, и на прикладную, чьими задачами является применение математики в процессах моделирования, в технике, физике, химии, биологии и экономике. Различие между двумя ветвями лежит в том, что для первой не нужны никакие наблюдения или данные из окружающего мира. Однако их нельзя и отделить друг от друга, потому что результаты теоретической математики часто находят практическое применение, а изучение реальных проблем нередко стимулирует теоретические поиски. Основные разделы чистой математики: ГЕОМЕТРИЯ, АЛГЕБРА, АНАЛИЗ. см. также АРИФМЕТИКА, ТРИГОНОМЕТРИЯ.
Лексикон прописных истин
Сушит сердце.
Энциклопедия афоризмов

Между духом и материей посредничает математика.
•Хуго Штейнхаус
Подобно тому как все искусства тяготеют к музыке, все науки стремятся к математике.
•Джордж Сантаяна
Он стал поэтом - для математика у него не хватало фантазии.
•Давид Гильберт об одном из своих учеников
Чистая математика - это такой предмет, где мы не знаем, о чем мы говорим, и не знаем, истинно ли то, что мы говорим.
•Бертран Рассел
Из дома реальности легко забрести в лес математики, но лишь немногие способны вернуться обратно.
•Хуго Штейнхаус
В математике нет символов для неясных мыслей.
•Анри Пуанкаре
Мы не можем понять эту формулу, и мы не знаем, что она значит, но мы доказали ее и поэтому знаем, что она должна быть достоверной.
•Некий профессор математики об одной из теорем Л. Эйлера
Законы математики, имеющие какое-либо отношение к реальному миру, ненадежны; а надежные математические законы не имеют отношения к реальному миру.
•Альберт Эйнштейн
Если тебе трудно сразу понять всю бесконечность, постарайся понять ее хотя бы наполовину.
•Славомир Врублевский
Арифметику невозможно понять, в нее приходится верить.
•Мария Кунцевич
Аксиома - это истина, на которую не хватило доказательств.
•В. Хмурый
«Если... то...» - если это не математика, то это шантаж.
•Хенрик Ягодзиньский
Значение синуса в военное время может достигать
четырех.
•Армейский фольклор
Любая формула, включенная в книгу, уменьшает число ее покупателей вдвое.
•Стивен Хокинг
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: МАТЕМАТИКА


будет выглядеть так: Что такое МАТЕМАТИКА