Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

ЛОГИЧЕСКИЕ ОПЕРАЦИИ

Большая советская энциклопедия (БЭС)
        логические связки, логические операторы, функции, преобразующие высказывания или пропозициональные формы (т. е. выражения логики предикатов (См. Логика предикатов), содержащие переменные (См. Переменная) и обращающиеся в высказывания при замене последних какими-либо конкретными их значениями) в высказывания или пропозициональные формы. Л. о. можно разделить на две основные группы: Кванторы и пропозициональные (сентенциональные) связки. Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка т. н. «количественные» («кванторные») слова: «все», «любой», «некоторый», «существует», «единственный», «не более (менее) чем», количественные числительные и т. п. Характерной особенностью кванторов является — в случае нефиктивного их применения — понижение числа свободных переменных в преобразуемом выражении: применение квантора к выражению, содержащему n свободных переменных, приводит, вообще говоря, к выражению, содержащему n — 1 свободную переменную, в частности, пропозициональную форму с одной свободной переменной применение квантора (по этой переменной) преобразует в высказывание.
         Пропозициональные связки (в отличие от кванторов, введение которых знаменует переход к логике предикатов) употребляются уже в самой элементарной части логики — в логике высказываний (См. Логика высказываний). В формализованных логических и логико-математических языках они выполняют функции, вполне аналогичные функциям союзов и союзных слов, употребляемых для образования сложных предложений в естественных языках. Так, отрицание истолковывается как частица «не», конъюнкция & истолковывается как союз «и», дизъюнкция — как (неразделительное) «или», импликация — как оборот «если..., то...», эквиваленция ~ — как оборот «тогда и только тогда, когда» и т. п. При этом, однако, соответствие между Л. о. и средствами естественного языка отнюдь не взаимно однозначно. Во-первых, потому, что высказывания, по определению, могут принимать лишь два «истинностных значения»: «истину» («и») и «ложь» («л»), так что пропозициональные Л. о. можно рассматривать как различные функции, отображающие некоторую область из двух элементов в себя; поэтому число различных n-местных (т. е. от n аргументов) Л. о. определяется из чисто комбинаторных соображений — оно равно 2n. Во-вторых, в формализованных языках математической логики игнорируются любые смысловые (и тем более стилистические) оттенки значений союзов, кроме тех, что непосредственно определяют истинностное значение получающегося сложного предложения. В свою очередь, в качестве Л. о. рассматриваются подчас и такие связки, содержательные аналоги которых в обычном языке, как правило, не имеют специальных наименований; таков, например, «штрих Шеффера» в нижеследующей таблице, где приведён полный перечень всех 0113336672.tif двуместных пропозициональных Л. о. (в первых двух столбцах помещены истинностные значения некоторых «исходных» высказываний р и q, в остальных — значения высказываний, образуемых из них посредством указанных сверху Л. о.).
        
        --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
        |        | Тождественная | Тождественная | P | Отррицание | q | Отрицание | Конъюнкция | Антиконъюнкция | Дизъюнкция | Антидизъюнкция | Эквиваленция | Антиэквиваленция | Импликация | Антиимпликация | Обратная    | Обратная           |
        |        | истина              | ложь                 |    | p                 |   | q               |                    | (штрих                |                    |                           |                       |                              |                    |                           | импликация | антиимпликация |
        |        |                         |                         |    |                    |   |                  |                    | Шеффера)         |                    |                           |                       |                              |                    |                           |                   |                          |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | p | q | и                      | л                      | p |  p               | q |  q             | p&q             | P)q                     | pq              | p 0127749499.tif q                 | p~q                | p 0184770807.tif q                   | pq             | p 0127585319.tif q                | pq             | pq                   |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | и | и | и                      | л                      | и | л                 | и | л               | и                 | л                        | и                 | л                        | и                    | л                           | и                 | л                        | и                 | л                       |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | и | л | и                      | л                      | и | л                 | л | и               | л                 | и                        | и                 | л                        | л                    | и                           | л                 | и                        | и                 | л                       |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | л | и | и                      | л                      | л | и                 | и | л               | л                 | и                        | и                 | л                        | л                    | и                           | и                 | л                        | л                 | и                       |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | л | л | и                      | л                      | л | и                 | л | и               | л                 | и                        | л                 | и                        | и                    | л                           | и                 | л                        | и                 | л                       |
        --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
         Поскольку в таблице сведены все мыслимые двуместные Л. о., соответствующие всевозможным «четырехбуквенным словам» из «и» и «л», записанным по вертикали в её столбцах, то естественно, что среди этих 17 Л. о. есть и «вырожденные» случаи: первые две «связки» вообще не зависят ни от каких «аргументов» — это константы «и» и «л» (понятно, что таких «нульместных» связок имеется ровно 0184202878.tif ), далее идут 0115806127.tif «одноместных связок» (каждая из которых зависит лишь от одного из аргументов р или q) и только затем уже 16—2—4 = 10 собственно двуместных Л. о. Можно далее рассматривать 0175293995.tif трёхместных Л. о. и т. д.; оказывается, однако, что уже небольшой части приведённых Л. о. достаточно для того, чтобы посредством их суперпозиций (т. е. последовательного применения) выразить любые n-местные Л. о. для любого натурального n. Такими функционально полными наборами связок являются, например, и &, и , и и даже одна-единственная связка . Поскольку логика высказываний может быть изоморфно (см. Изоморфизм) интерпретирована в терминах логики классов (См. Логика классов), для каждой Л. о. имеется аналогичная теоретико-множественная операция; совокупность таких операций над множествами (классами) образует т. н. алгебру множеств. См. Алгебра логики.
        
         Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, §§ 05, 06 и 15.
         Ю. А. Гастев.
Философский энциклопедический словарь 2
        логич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сен-тенциональные) связки, с помощью которых образуются выражения логики высказываний, и кванторы, введение которых позволяет расширить логику высказываний до логики предикатов. Л. о. позволяют строить сложные высказывания из некоторых элементарных, подобно тому как союзы, союзные слова и обороты служат для построения сложных предложений из простых в естеств. языках. Напр., в классич. двузначной логике, в которой высказывания могут быть только либо истинными, либо ложными, Л. о. конъюнкции (обозначается — &) интерпретируется как союз «и» и его многочисл. синонимы и оттенки («а», «да», «но», «хотя», «между тем как», «а также», «кроме того» и т. д.); дизъюнкции — как один из смыслов («неразделительный») союза «или»; отрицание — как частица «не» и её языковые эквиваленты; импликации — примерно как обороты «если ..., то ...» и «из... следует...» или глагол «влечёт»; эквиваленции (~) — как оборот «тогда и только тогда, когда» и его синонимы и т. п. Соответствие это не взаимно-однозначно и приблизительно; поэтому точные определения Л. о. задаются не «переводами» их на естеств. языки, а либо посредством т. н. истинностных таблиц (или таблиц истинности), указывающих, какое из двух ис-тинностных значений — «и» («истина») или «л» («ложь») — принимает результат применения данной Л. о. к некоторым исходным высказываниям при каждом конкретном распределении истинностных значений этих исходных высказываний, либо заданием надлежащих постулатов (логич. аксиом и правил вывода).
        Изоморфная (см. Изоморфизм и гомоморфизм) интерпретируемость классич. логики высказываний в терминах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из её Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют булевы алгебры (соответственно алгебру высказываний и алгебру множеств; см. Алгебра логики). Ч ё p ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960, §§ 05, 06, 15; С то л л Р.-Р., Множества. Логика. Аксиоматич. теории, пер. с, англ., М., 1968.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: ЛОГИЧЕСКИЕ ОПЕРАЦИИ


будет выглядеть так: Что такое ЛОГИЧЕСКИЕ ОПЕРАЦИИ