Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

ЛОБАЧЕВСКИЙ

Большая советская энциклопедия (БЭС)
        Николай Иванович [20.11(1.12).1792, Нижний Новгород, ныне г. Горький, — 12 (24).2.1856, Казань], русский математик, создатель неевклидовой геометрии, мыслитель-материалист, деятель университетского образования и народного просвещения. Родился в семье мелкого чиновника. Почти всю жизнь Л. провёл в Казани. Там он учился в гимназии (1802—07) на казённом содержании, затем в Казанском университете (1807—11). Рано обнаружил выдающиеся способности, по окончании университета получил степень магистра (1811) и был оставлен при университете; в 1814 стал адъюнктом, в 1816 — экстраординарным и в 1822 — ординарным профессором. Несмотря на реакционную обстановку, сложившуюся в годы попечительства М. Л. Магницкого, Л. вёл напряжённую научную и педагогическую работу (преподавал математику, физику и астрономию), закупил в столице оборудование для физического кабинета и книги для библиотеки, а затем возглавлял её 10 лет (с 1825); Л. заведовал обсерваторией; избирался деканом физико-математического факультета (1820—22, 1823—25). Но столкновения с попечителем обострились: Л. отстаивал в преподавании научные материалистические взгляды.
         В эти годы Л. отыскивал пути строгого построения начал геометрии. Сохранились: студенческие записи его лекций (от 1817), где им делалась попытка доказать постулат параллельности Евклида, но в рукописи учебника «Геометрия» (1823) он уже отказался от этой попытки. В «Обозрениях преподавания чистой математики» на 1822/23 и 1824/25 Л. указал на «до сих пор непобедимую» трудность проблемы параллелизма и на необходимость принимать в геометрии в качестве исходных понятия, непосредственно приобретаемые из природы. Наконец, преодолев тысячелетние традиции, он приходит к созданию новой геометрии — так называемой геометрии Лобачевского. 7 февраля 1826 он представил для напечатания в Записках физико-математического отделения сочинение: «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке). 11 февраля оно было рассмотрено и назначены рецензенты. Сам Л. указывал, что он читал это рассуждение на заседании отделения 12 февраля. Но издание не осуществилось. Рукопись и отзывы не сохранились, однако само сочинение было включено Л. в его труд «О началах геометрии» в журнале «Казанский вестник» (1829—30), явившийся первой в мировой литературе публикацией по неевклидовой геометрии. Исходя из поисков безусловной строгости и ясности в началах геометрии, Л. рассматривает аксиому параллельности Евклида как произвольное ограничение, как требование слишком жёсткое, ограничивающее возможности теории, описывающей свойства пространства. Он заменяет эту аксиому требованием более широким и общим, именно: на плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную (по существу не менее чем одна, если учесть предельный случай).
         Разработанная Л. новая геометрия существенно отличается от евклидовой геометрии, но при больших значениях входящей в формулы некоторой постоянной R (радиус кривизны пространства) отклонение становится незначительным (см. Лобачевского геометрия).
         В соответствии со своим материалистическим подходом к изучению природы, Л. полагал, что только научный опыт может выявить, какая из геометрий осуществляется в физическом пространстве. Используя новейшие астрономические данные того времени, он пришёл к выводу, что число R очень велико и отклонения от евклидовой геометрии если и существуют, то заключены в пределах ошибок измерений. Т. о., была обоснована практическая пригодность евклидовой геометрии. Кроме того, Л. показал, как его геометрию можно применять в др. разделах математики, а именно в математическом анализе при вычислении определённых интегралов.
         Доклад Л. совпал по времени с увольнением Магницкого. Л. был высоко оценен новым попечителем — М. Н. Мусиным-Пушкиным. Л. избрали ректором (1827) и за 19 лет руководства университетом он добился его подлинного расцвета. Программа деятельности Л. отражена в его замечательной речи «О важнейших предметах воспитания» (1828, опубликована 1832), в которой обрисован идеал гармонического развития личности, подчёркнуто общественное значение воспитания и образования, освещена роль наук и долг учёного перед страной и народом.
         В бытность Л. ректором было осуществлено в 1832—40 строительство целого комплекса вспомогательных зданий: библиотека, астрономическая обсерватория, физический кабинет и химическая лаборатория, анатомический театр, клиника и др. Он положил начало «Учёным запискам Казанского университета» (1834) и развил издательскую деятельность. Уровень научно-учебной работы повысился, контингент студентов возрос. университет стал важным центром востоковедения. Немало сил Л. вкладывал и в улучшение постановки преподавания в гимназиях и училищах округа. В моменты стихийных бедствий (эпидемия холеры в 1830, пожар Казани в 1842) особенно ярко проявилась его забота об университете. Но ректорство не отрывало Л. от преподавания: в разные годы он читал лекции по аналитической механике, гидромеханике, интегральному исчислению, дифференциальным уравнениям, математической физике, вариационному исчислению, а в 1838—40 — научно-популярные лекции по физике для населения. Студенты высоко ценили лекции Л.
         Однако научные идеи Л. не были поняты современниками. Его труд «О началах геометрии», представленный в 1832 советом университета в Академию наук, получил у М. В. Остроградского (См. Остроградский) отрицательную оценку, а в 1834 в реакции журнала «Сын отечества» появилась анонимная издевательская статейка. Но Л. не прекратил разработки своей геометрии. Его работы появлялись в 1835—38, а в 1840 в Германии вышла его книга «Геометрические исследования» (на немецком языке). Эта стойкая борьба за научную истину отличает Л. от двух его современников, тоже пришедших к открытию неевклидовой геометрии. Венгерский математик Я. Больяй опубликовал свой труд позднее Л. (1832). Не встретив поддержки у современников, он не продолжил исследований. Немецкий математик К. Ф. Гаусс также владел началами неевклидовой геометрии. Но из опасения встретить непонимание Гаусс не разрабатывал их далее и не опубликовал. Однако, не высказываясь в печати, он высоко оценил труды Л., и по его предложению Л. был в 1842 избран членом-корреспондентом Гёттингенского учёного общества.
         Л. получил ряд ценных результатов и в др. разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений (Лобачевского метод), в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др.
         В 1846 Л. оказался фактически отстранённым от университета. Он был назначен помощником нового попечителя (без оплаты) и лишён ректорства. Здоровье его пошатнулось. Но семейное горе — смерть сына, материальные затруднения и развивавшаяся слепота не могли сломить мужества Л. Последнюю работу «Пангеометрию» он создал за год до смерти, диктуя её текст.
         Л. умер непризнанным. Большую роль в признании трудов Л. сыграли исследования Э. Бельтрами (1868), Ф. Клейна (1871), А. Пуанкаре (1883) и др. Казанский университет и физико-математическое общество провели большую работу по выявлению значения идей Л. и изданию его геометрических сочинений. Широкое признание пришло к 100-летнему юбилею Л. — была учреждена международная премия, в Казани открыт памятник (1896).
        
         Соч.: Полн. собр. соч., т. 1—5, М. — Л., 1946—51; Избр. труды по геометрии, М. — Л., 1956.
        
         Лит.: Васильев А. В., Лобачевский, СПБ, 1914; Каган В. Ф., Лобачевский, 2 изд., М. — Л., 1948 (имеется библ.); Лаптев Б. Л., Великий русский математик, «Вестник высшей школы», 1967, № 12; Историко-математические исследования, в, 3, 4, 6, 11, М. — Л., 1950—58 (ряд статей); Модзалевский Л. Б., Материалы для биографии Н. И. Лобачевского, М. — Л., 1948.
         Б. Л. Лаптев.
        Н. И. Лобачевский.
Ономастикон
Биографы гениального математика полагают, что он принадлежал к древнему дворянскому роду, происходившему с Волыни. Родоначальника прозвали Лобач («большелобый»), но дети его стали не Лобачевы, а предпочли фамилию на шляхетский образец, то есть с окончанием кий - Лобачевский. (Ф)
Русская цивилизация
Николай Иванович (20.11.1792-12.02.1856), математик, создатель неевклидовой геометрии. Из мелкопоместных нижегородских дворян.
В 1807 — 10 Лобачевский учился в Казанском университете, по окончании которого оставлен читать лекции по математике, с 1814 — адъюнкт физико-математического факультета, с 1820 возглавил кафедру чистой математики, с 1822 ординарный профессор и декан физико-математического факультета. С 1827 Лобачевский шесть раз избирался ректором Казанского университета. В 1846 он оставил этот пост, получив назначение помощника попечителя Казанского учебного округа, с ноября 1855 уволен по болезни.
В н. 1820-х Лобачевский составил учебник по геометрии. В 1826 в работе «Новые начала геометрии с полной теориею параллельных» (опубл. в 1830) Лобачевский изложил основы неевклидовой геометрии. Эта теория, хотя и не получившая признания современников, совершила переворот в представлениях о природе пространства, в основе которого более 2 тыс. лет лежало учение Евклида, и оказала огромное влияние на развитие математического мышления. Лобачевскому принадлежат многие труды по алгебре (наиболее значительный «Алгебра, или Вычисление конечных», 1834), математическому анализу, теории вероятностей, механике, физике и астрономии.
В.А. Федоров
Энциклопедия Отечеcтво
ЛОБАЧЕВСКИЙ Николай Иванович (1792-1856), математик, создатель неевклидовой геометрии (геометрии Лобачевского). Ректор Казанского университета (1827-46). Открытие Лобачевского (1826, опубликовано в 1829-30), не получившее признания современников, во 2-й половине 19 в. совершило переворот в представлении о природе пространства, в основе которого более 2 тыс. лет лежало учение Евклида, и оказало огромное влияние на развитие математического мышления. Труды по алгебре, математическому анализу, теории вероятностей, механике, физике и астрономии. В 1993 РАН учреждена премия имени Лобачевского.
Н.И. Лобачевский
Орфографический словарь Лопатина
Лобач`евский, Лобач`евский, -ого: геом`етрия Лобач`евского, м`етод Лобач`евского
Имя собственное в русской поэзии 20 в
(Николай Иванович (1792-1856) - рус. математик) И пусть пространство Лобачевского Летит с знамен ночного Невского. Это шествуют творяне, Заменивши Д на Т, Хл920,21 (281); Это Разина мятеж, Долетев до неба Невского, Увлекает и чертеж И пространство Лобачевского. Пусть Лобачевского кривые Украсят города Дугою над рабочей выей Всемирного труда. ib.; Перед закатом в Кисловодск Я помню лик, суровый и угрюмый, Запрятан в воротник: То Лобачевский - ты, Суровый Числоводск. Хл921 (158); И я желал сегодня, А может и вчера, В знаменах Невского, Под кровлею орлиного пера, Увидеть имя Лобачевского. Он будет с свободой на "ты"! И вот к колодцу доброты, О, внучка Лобачевского, Вы с ведрами идете, Меня встречая. ib.
История философии. Энциклопедия
ЛОБАЧЕВСКИЙ Николай Иванович, (1792-1856) - русский математик, создатель новой геометрической системы (неевклидовой геометрии), философ, педагог. Член-корреспондент Геттингенского Ученого Общества (1842). К столетнему юбилею Л. учреждена Международная премия имени Л. (с 1895). Учился в Казанской гимназии (1802-1807) и Казанском университете (1807-1811). Оставлен при Казанском университете, с которым связана вся его деятельность: магистр математики (1811), адъюнкт (1814), экстраординарный профессор (1816), библиотекарь университета (1819- 1835, оставался в этой должности, даже будучи ректором), ординарный профессор (с 1822), декан физико-математического факультета (1820-1822, 1823- 1825), ректор Казанского университета (1827-1846), который под руководством Л. стал первоклассным высшим учебным заведением России того времени; инициатор издания и редактор "Ученых записок Казанского университета" (с 1834), помощник попечителя Казанского учебного округа (1846-1856). Главные труды: речь "Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных" (23.2.1826), книги "О началах геометрии" (1829- 1830), "Воображаемая геометрия" (1835), "Применение воображаемой геометрии к некоторым интегралам" (1836), "Новые начала геометрии с полной теорией параллельных" (1835-1838), "Геометрические исследования по теории параллельных линий" (1840), "Пангеометрия" (1855). В СССР было издано полное собрание сочинений Л. в пяти томах (1946-1951). Ему принадлежат также фундаментальные труды в области математического анализа (тригонометрические ряды) и алгебры. Л. является создателем "геометрии Л." - неевклидовой геометрической системы, которая стала поворотным пунктом в развитии математического мышления в 19 в. В своем труде "Геометрические исследования по теории параллельных линий" Л. доказал, что основное положение теории параллельных линий принималось без тщательного анализа необходимости этого положения. Суть дела, по Л., в следующем: в случае одной плоскости, в результате пересечения двух прямых линий, лежащих на ней, третьей прямой линией получается 8 углов. Если сумма одностороних внутренних углов из них равна сумме двух прямых углов, то две пересекаемые прямые линии являются параллельными. Геометрия Евклида утверждает справедливость и обратного утверждения: всякий раз, когда две прямые линии параллельны, то при их пересечении третьей прямой линией сумма одностороних внутренних углов из них равна сумме двух прямых углов. Это составляет основание так называемого пятого постулата Евклида "о параллельных линиях", который значительно более содержателен по сравнению с другими постулатами. При этом в геометрии Евклида многие предложения возможно доказать и без его применения. Необходимость принятия этого утверждения без доказательства во все времена интерпретировалась ведущими математиками как существеннейший недостаток теории параллельных линий. Поэтому еще со времен Античности предпринимались безуспешные попытки непосредственных доказательств (из введенных до этого четырех постулатов) пятого постулата в форме логического вывода утверждения, заключенного в нем. Л. также делал неудавшиеся попытки отыскания доказательства пятого постулата, однако позднее пришел к необходимости создания новой геометрической системы. Совокупность предложений геометрии, доказываемых без применения постулата о параллельных линиях, составляет основание того, что было названо "абсолютной геометрией". В своем труде "Геометрические исследования по теории параллельных линий" Л. сначала изложил предложения абсолютной геометрии, и только на основании этого подошел к доказательству предложений, которые принципиально невозможно доказать без применения постулата о параллельных линиях. Такая дифференциация и составила основу позднейших работ Л. в этом направлении. Л. так определял основные выводы из своей речи "Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных": "...Напрасное старание со времен Евклида, в продолжение двух тысяч лет, заставило меня подозревать, что в самых понятиях не заключается той истины, которую хотели доказать и которую поверить, подобно другим физическим законам, могут лишь опыты, каковы, например, Астрономические наблюдения...". При этом Л. выдвигал допущение, что в случае одной плоскости через точку С, не принадлежащую прямой линии AB, возможно провести как минимум две прямые линии, не пересекающих прямую линию AB (а это полностью противоречило постулату Евклида о параллельных). По идее Л., оно должно было бы противоречить абсолютной геометрии и, тем самым, привести к доказательству постулата Евклида о параллельных линиях. Однако сделанные Л. выводы из этого допущения и положений абсолютной геометрии привели к созданию полностью непротиворечивой геометрической системы, отличающейся от геометрии Евклида, - неевклидовой геометрии. Л. назвал ее "воображаемой геометрией". Независимо от Л., непосредственно к обоснованию неевклидовой геометрии в 1832 подошел венгерский математик Я.Больяи. Известно также, что аналогичными проблемами активно занимался германский математик К.Гаусс, который никак не выражался по этому поводу публично: "...возможно даже, что я не решусь на это во всю свою жизнь, потому что я боюсь крика беотийцев /Беотия - область Древней Греции, жителям которой, согласно древним легендам, приписывались ограниченные умственные способности - C.C./, который поднимется, когда я выскажу свои воззрения целиком..." (именно К.Гаусс инициировал избрание Л. в член-корреспонденты Ученого общества Геттингена). В дальнейшее развитие идей Л. немецкий математик Б.Риман в своей лекции "О гипотезах, лежащих в основаниях геометрии" (1854) выдвинул общую идею математических пространств (включая пространства функциональные и топологические): он рассматривал геометрию уже в широком смысле как учение о непрерывных многомерных многообразиях (т.е. совокупностях любых однородных объектов), обобщив результаты исследований К.Гаусса по внутренней геометрии поверхностей; провел фундаментальные исследования римановых пространств (обобщивших геометрию Евклида, гиперболические геометрии Л. и эллиптические геометрии Римана). По поводу применимости этих идей к реальному физическому пространству Б.Риман, в первую очередь, ставил вопрос о "...причинах метрических свойств... его", совместно с Л. предварял тем самым то, что было сделано Эйнштейном в общей теории относительности. Л. в своих исследованиях интерпретировал исходные математические абстракции (в том числе основные понятия геометрии) как отражения базисных реальных отношений и свойств материального мира, полагая, что в природе мы "...познаем собственно только движение, без которого чувственные впечатления невозможны... все прочие понятия, например, геометрические, произведены нашим умом искусственно, будучи взяты в свойствах движения... Первыми данными, без сомнения, будут всегда те понятия, которые мы приобретаем в природе посредством наших чувств... Первые понятия, с которых начинается какая-нибудь наука... приобретаются чувствами; врожденным - не должно верить...". По Л., математические абстракции рождаются не по произволу человеческой мысли, а в результате взаимоотношения личности с реальной действительностью: "...Поверхности и линии не существуют в природе, а только в воображении: они предполагают, следовательно, свойство тел, познание которых должно родить в нас понятие о поверхностях и линиях..."; в основаниях математических наук должны лежать "приобретаемые из природы", а не произвольные понятия, а те, кто хотел "...ввести подобные понятия в математику, не нашли себе последователей. Такую участь имели основания форономии Канта...". Противоположение априоризму Канта была одной из важнейших предпосылок создания неевклидовых геометрий. Показав неустойчивость оснований геометрии Евклида, Л. отвергал теорию Канта, интерпретировавшую базисные аксиомы евклидовой геометрии не как результат опыта человечества, а как врожденные формы человеческого сознания. (Мнение Пирса о значении геометрии Л. - см. Пирс.) Л. признавал несостоятельность попыток вывода оснований математики из одних лишь построений разума: "...все математические начала, которые думают произвести из самого разума, независимо от вещей мира, останутся бесполезными для математики...". В ректорской "Речи о важнейших предметах воспитания" Л. говорил, что "...в это заведение вступивши, юношество не услышит пустых слов без всякой мысли, одних звуков без всякого значения. Здесь учат тому, что на самом деле существует; а не тому, что изобретено одним праздным умом...". Для Л. целью научного знания было не развитие оторванных от жизни понятий, а изучение реального мира. Возможность соответствия построенной им геометрии отношениям, существующим в реальном мире, Л. стремился подтвердить опытной проверкой. Признавая фундаментальную роль гипотез для развития науки, Л. требовал при выборе гипотез руководствоваться практикой, позволяющей останавливаться на тех из них, которые вернее отражают соотношения, наблюдаемые в действительности. Руководящим принципом всей деятельности Л.-педагога была мысль о том, что опыт, практика дают уверенность в правильности теоретических выводов. Л. требовал такого начального обучения математике, которое приучало бы учащихся за математическим действиями видеть явления реальной действительности. Л. в своей активной деятельности за правильную организацию народного образования призывал к тому, чтобы каждый пришедший в университет стал гражданином, который "...высокими познаниями своими составляет честь и славу своего Отечества...".
C. B. Силков
История философии. Грицианов
ЛОБАЧЕВСКИЙ Николай Иванович (1792—1856) — русский математик, создатель новой геометрической системы (неевклидовой геометрии), философ, педагог. Член-корреспондент Геттингенского Ученого Общества (1842). К столетнему юбилею Л. учреждена Международная премия имени Л. (с 1895). Учился в Казанской гимназии (1802—1807) и Казанском университете (1807—1811). Оставлен при Казанском университете, с которым связана вся его деятельность: магистр математики (1811), адъюнкт (1814), экстраординарный профессор (1816), библиотекарь университета (1819— 1835, оставался в этой должности, даже будучи ректором), ординарный профессор (с 1822), декан физико-математического факультета (1820—1822, 1823— 1825), ректор Казанского университета (1827—1846), который под руководством Л. стал первоклассным высшим учебным заведением России того времени; инициатор издания и редактор ‘Ученых записок Казанского университета’ (с 1834), помощник попечителя Казанского учебного округа (1846—1856). Главные труды: речь ‘Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных’ (23.2.1826), книги ‘О началах геометрии’ (1829— 1830), ‘Воображаемая геометрия’ (1835), ‘Применение воображаемой геометрии к некоторым интегралам’ (1836), ‘Новые начала геометрии с полной теорией параллельных’ (1835—1838), ‘Геометрические исследования по теории параллельных линий’ (1840), ‘Пангеометрия’ (1855). В СССР было издано полное собрание сочинений Л. в пяти томах (1946—1951). Ему принадлежат также фундаментальные труды в области математического анализа (тригонометрические ряды) и алгебры. Л. является создателем ‘геометрии Л.’ — неевклидовой геометрической системы, которая стала поворотным пунктом в развитии математического мышления в 19 в. В своем труде ‘Геометрические исследования по теории параллельных линий’ Л. доказал, что основное положение теории параллельных линий принималось без тщательного анализа необходимости этого положения. Суть дела, по Л., в следующем: в случае одной плоскости, в результате пересечения двух прямых линий, лежащих на ней, третьей прямой линией получается 8 углов. Если сумма одностороних внутренних углов из них равна сумме двух прямых углов, то две пересекаемые прямые линии являются параллельными. Геометрия Евклида утверждает справедливость и обратного утверждения: всякий раз, когда две прямые линии параллельны, то при их пересечении третьей прямой линией сумма одностороних внутренних углов из них равна сумме двух прямых углов. Это составляет основание так называемого пятого постулата Евклида ‘о параллельных линиях’, который значительно более содержателен по сравнению с другими постулатами. При этом в геометрии Евклида многие предложения возможно доказать и без его применения. Необходимость принятия этого утверждения без доказательства во все времена интерпретировалась ведущими математиками как существеннейший недостаток теории параллельных линий. Поэтому еще со времен Античности предпринимались безуспешные попытки непосредственных доказательств (из введенных до этого четырех постулатов) пятого постулата в форме логического вывода утверждения, заключенного в нем. Л. также делал неудавшиеся попытки отыскания доказательства пятого постулата, однако позднее пришел к необходимости создания новой геометрической системы. Совокупность предложений геометрии, доказываемых без применения постулата о параллельных линиях, составляет основание того, что было названо ‘абсолютной геометрией’. В своем труде ‘Геометрические исследования по теории параллельных линий’ Л. сначала изложил предложения абсолютной геометрии, и только на основании этого подошел к доказательству предложений, которые принципиально невозможно доказать без применения постулата о параллельных линиях. Такая дифференциация и составила основу позднейших работ Л. в этом направлении. Л. так определял основные выводы из своей речи ‘Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных’: ‘...Напрасное старание со времен Евклида, в продолжение двух тысяч лет, заставило меня подозревать, что в самых понятиях не заключается той истины, которую хотели доказать и которую поверить, подобно другим физическим законам, могут лишь опыты, каковы, например, Астрономические наблюдения...’. При этом Л. выдвигал допущение, что в случае одной плоскости через точку С, не принадлежащую прямой линии AB, возможно провести как минимум две прямые линии, не пересекающих прямую линию AB (а это полностью противоречило постулату Евклида о параллельных). По идее Л., оно должно было бы противоречить абсолютной геометрии и, тем самым, привести к доказательству постулата Евклида о параллельных линиях. Однако сделанные Л. выводы из этого допущения и положений абсолютной геометрии привели к созданию полностью непротиворечивой геометрической системы, отличающейся от геометрии Евклида, — неевклидовой геометрии. Л. назвал ее ‘воображаемой геометрией’. Независимо от Л., непосредственно к обоснованию неевклидовой геометрии в 1832 подошел венгерский математик Я.Больяи. Известно также, что аналогичными проблемами активно занимался германский математик К.Гаусс, который никак не выражался по этому поводу публично: ‘...возможно даже, что я не решусь на это во всю свою жизнь, потому что я боюсь крика беотийцев /Беотия — область Древней Греции, жителям которой, согласно древним легендам, приписывались ограниченные умственные способности — C.C./, который поднимется, когда я выскажу свои воззрения целиком...’ (именно К.Гаусс инициировал избрание Л. в член-корреспонденты Ученого общества Геттингена). В дальнейшее развитие идей Л. немецкий математик Б.Риман в своей лекции ‘О гипотезах, лежащих в основаниях геометрии’ (1854) выдвинул общую идею математических пространств (включая пространства функциональные и топологические): он рассматривал геометрию уже в широком смысле как учение о непрерывных многомерных многообразиях (т.е. совокупностях любых однородных объектов), обобщив результаты исследований К.Гаусса по внутренней геометрии поверхностей; провел фундаментальные исследования римановых пространств (обобщивших геометрию Евклида, гиперболические геометрии Л. и эллиптические геометрии Римана). По поводу применимости этих идей к реальному физическому пространству Б.Риман, в первую очередь, ставил вопрос о ‘...причинах метрических свойств... его’, совместно с Л. предварял тем самым то, что было сделано Эйнштейном в общей теории относительности. Л. в своих исследованиях интерпретировал исходные математические абстракции (в том числе основные понятия геометрии) как отражения базисных реальных отношений и свойств материального мира, полагая, что в природе мы ‘...познаем собственно только движение, без которого чувственные впечатления невозможны... все прочие понятия, например, геометрические, произведены нашим умом искусственно, будучи взяты в свойствах движения... Первыми данными, без сомнения, будут всегда те понятия, которые мы приобретаем в природе посредством наших чувств... Первые понятия, с которых начинается какая-нибудь наука... приобретаются чувствами; врожденным — не должно верить...’. По Л., математические абстракции рождаются не по произволу человеческой мысли, а в результате взаимоотношения личности с реальной действительностью: ‘...Поверхности и линии не существуют в природе, а только в воображении: они предполагают, следовательно, свойство тел, познание которых должно родить в нас понятие о поверхностях и линиях...’; в основаниях математических наук должны лежать ‘приобретаемые из природы’, а не произвольные понятия, а те, кто хотел ‘...ввести подобные понятия в математику, не нашли себе последователей. Такую участь имели основания форономии Канта...’. Противоположение априоризму Канта была одной из важнейших предпосылок создания неевклидовых геометрий. Показав неустойчивость оснований геометрии Евклида, Л. отвергал теорию Канта, интерпретировавшую базисные аксиомы евклидовой геометрии не как результат опыта человечества, а как врожденные формы человеческого сознания. (Мнение Пирса о значении геометрии Л. — см. Пирс.) Л. признавал несостоятельность попыток вывода оснований математики из одних лишь построений разума: ‘...все математические начала, которые думают произвести из самого разума, независимо от вещей мира, останутся бесполезными для математики...’. В ректорской ‘Речи о важнейших предметах воспитания’ Л. говорил, что ‘...в это заведение вступивши, юношество не услышит пустых слов без всякой мысли, одних звуков без всякого значения. Здесь учат тому, что на самом деле существует; а не тому, что изобретено одним праздным умом...’. Для Л. целью научного знания было не развитие оторванных от жизни понятий, а изучение реального мира. Возможность соответствия построенной им геометрии отношениям, существующим в реальном мире, Л. стремился подтвердить опытной проверкой. Признавая фундаментальную роль гипотез для развития науки, Л. требовал при выборе гипотез руководствоваться практикой, позволяющей останавливаться на тех из них, которые вернее отражают соотношения, наблюдаемые в действительности. Руководящим принципом всей деятельности Л.-педагога была мысль о том, что опыт, практика дают уверенность в правильности теоретических выводов. Л. требовал такого начального обучения математике, которое приучало бы учащихся за математическим действиями видеть явления реальной действительности. Л. в своей активной деятельности за правильную организацию народного образования призывал к тому, чтобы каждый пришедший в университет стал гражданином, который ‘...высокими познаниями своими составляет честь и славу своего Отечества...’.
Философский словарь
Николай Иванович (1792 — 1856) — рус. математик, один из создателей неевклидовой геометрии. В основу построения геометрии Л. легла идея о тесной зависимости геометрических отношений от самой природы материальных тел. Л., предположив независимость пятого постулата геометрии Евклида от др. положений этой геометрии, построил логически непротиворечивую новую систему геометрии. в к-рой пятый постулат гласит: через точку, лежащую вне прямой, можно провести не одну, а по крайней мере две параллельные линии (независимо от Л. к этим идеям пришли также К.-Ф. Гаусс и Я. Бойай; из них, однако, только второй решился опубликовать свои результаты в 1832). Постулат о параллельных Л. стремился доказать, обращаясь к самой реальности, к природе вещей. Развивая новую геометрию, он показал, что отрицание зависимости между отрезками и углами в евклидовой геометрии неполно описывает свойства пространства; он полагал, что в действительности такая зависимость существует. Геометрия Л. явилась убедительным аргументом против априоризма Канта. Л. считал, что истинность геометрии может быть обоснована опытом. В своих взглядах на познание Л. подчеркивал первичность тех понятий, к-рые человек “приобретает посредством наших чувств”. Одновременно он придавал решающее значение разуму в научном познании.
Научнотехнический Энциклопедический Словарь
ЛОБАЧЕВСКИЙ Николай Иванович (1792-1856), русский математик, окончил Казанский университет, где был назначен на должность профессора в 1816 г. Его самое выдающееся достижение (обнародованное в 1826 г.) - создание одной из первых исчерпывающих систем НЕЕВКЛИДОВОЙ ГЕОМЕТРИИ.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: ЛОБАЧЕВСКИЙ


будет выглядеть так: Что такое ЛОБАЧЕВСКИЙ