Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

КЛЕТКА

Большая советская энциклопедия (БЭС)
        элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют и как самостоятельные организмы (см. Простейшие), и в составе многоклеточных организмов (тканевые К.). Термин «К.» предложен английским микроскопистом Р. Гуком (1665). К. — предмет изучения особого раздела биологии — цитологии (См. Цитология). Систематическое изучение К. началось лишь в 19 в. Одним из крупнейших научных обобщений того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение жизни на клеточном уровне лежит в основе современных биологических исследований.
         В строении и функциях каждой К. обнаруживаются признаки, общие для всех К., что отражает единство их происхождения из первичных органических комплексов. Частные особенности различных К. — результат их специализации в процессе эволюции. Так, все К. сходно регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, инфузории и т.д.) сильно различаются размерами, формой, поведением. Не менее резко различаются К. многоклеточных организмов. Так, у человека имеются лимфоидные К. — небольшие (диаметром около 10 мкм) округлые К., участвующие в иммунологических реакциях, и нервные К., часть которых имеет отростки длиной более метра; эти К. осуществляют основные регуляторные функции в организме.
         Методы исследования. Первым цитологическим методом была микроскопия живых К. Современные варианты прижизненной (витальной) световой микроскопии — фазово-контрастная, люминесцентная, интерференционная и др. (см. Микроскоп) — позволяют изучать форму К. и общее строение некоторых её структур, движение К. и их деление. Детали строения К. обнаруживаются лишь после специального контрастирования, что достигается окраской убитой К. Новый этап изучения структуры К. — электронная микроскопия, дающая значительно большее разрешение структур К. по сравнению со световой микроскопией (см. Разрешающая способность оптических приборов). Химический состав К. изучается цито- и гистохимическими методами, позволяющими выяснить локализацию и концентрацию веществ в клеточных структурах, интенсивность синтеза веществ и их перемещение в К. (см. Гистохимия). Цитофизиологические методы позволяют изучать функции К., например возбуждение, секрецию. См. также Авторадиография, Микроскопическая техника, Цитофотометрия.
         Общие свойства клеток. В каждой К. различают две основные части — Ядро и цитоплазму (См. Цитоплазма), в которых, в свою очередь, можно выделить структуры, различающиеся по форме, размерам, внутреннему строению, химическим свойствам и функциям. Одни из них — так называемые органоиды — жизненно необходимы К. и обнаруживаются во всех К. Другие — продукты активности К., представляющие временные образования. В специализированных структурах осуществляется разделение различных биохимических функций, что способствует осуществлению в одной и той же К. разнородных процессов, включающих синтез и распад многих веществ.
         В ядерных органоидах — хромосомах (См. Хромосомы), в их основном компоненте — ДНК, хранится генетическая информация о строении белков, свойственных организму определённого вида (см. Ген, Генетический код). Другое важнейшее свойство ДНК — способность к самовоспроизведению, что обеспечивает как стабильность наследственной информации, так и её непрерывность — передачу следующим поколениям. На ограниченных участках ДНК, охватывающих несколько генов, как на матрицах, синтезируются рибонуклеиновые кислоты — непосредственные участники синтеза белка. Перенос (Транскрипция) кода ДНК происходит при синтезе информационных РНК (и-РНК). Синтез белка представляется как считывание информации с матрицы РНК. В этом процессе, называемом трансляцией (См. Трансляция), принимают участие транспортные РНК (т-РНК) и специальные органоиды — Рибосомы, образующиеся в ядрышке (См. Ядрышко). Размеры ядрышка определяются главным образом потребностью К. в рибосомах; поэтому особенно велико оно в К., интенсивно синтезирующих белок. Синтез белка — конечный итог реализации функций хромосом — осуществляется главным образом в цитоплазме. Белки — ферменты, детали структур и регуляторы разных процессов, включая и транскрипцию — определяют в конечном счёте все стороны жизни К., позволяя К. сохранять свою индивидуальность, несмотря на постоянно меняющееся окружение. Если в бактериальной К. синтезируется около 1000 разных белков, то почти в каждой из К. человека — свыше 10000. Таким образом, разнообразие внутриклеточных процессов в ходе эволюции организмов существенно возрастает. Оболочка ядра, отделяющая его содержимое от цитоплазмы, состоит из двух мембран, пронизанных порами — специализированных участков для транспорта некоторых соединений из ядра в цитоплазму и обратно. Другие вещества проходят через мембраны путём диффузии или активного транспорта, требующего затрат энергии. Многие процессы происходят в цитоплазме К. при участии мембран эндоплазматической сети (См. Эндоплазматическая сеть) — основной синтезирующей системы К., а также Гольджи комплекса и митохондрий (См. Митохондрии). Отличия мембран разных органоидов определяются свойствами образующих их белков и липидов. К некоторым мембранам эндоплазматической сети прикреплены рибосомы; здесь происходит интенсивный синтез белка. Такая гранулярная эндоплазматическая сеть особенно развита в К., секретирующих или интенсивно обновляющих белок, например у человека в К. печени, поджелудочной железы, нервных К. В состав других биологических мембран (См. Биологические мембраны), лишённых рибосом (гладкоконтурная сеть), входят ферменты, участвующие в синтезе углеводно-белковых и липидных комплексов. В каналах эндоплазматической сети могут временно накапливаться продукты деятельности К.; в некоторых К. по каналам происходит направленный транспорт веществ. Перед выведением из К. вещества концентрируются в пластинчатом комплексе (комплексе Гольджи). Здесь обособляются различные включения К., например секреторные или пигментные гранулы, образуются Лизосомы — пузырьки, содержащие гидролитические ферменты и участвующие во внутриклеточном переваривании многих веществ. Система окруженных мембранами каналов, вакуолей и пузырьков представляет одно целое. Так, эндоплазматическая сеть может без перерыва переходить в мембраны, окружающие ядро, соединяться с цитоплазматической мембраной, формировать комплекс Гольджи. Однако связи эти нестабильны. Нередко, а во многих К. обычно разные мембранные структуры разобщены и обмениваются веществами через гиалоплазму (См. Гиалоплазма). Энергетика К. во многом зависит от работы митохондрий. Число их колеблется в К. разного типа от десятков до тысяч. Например, в печёночной К. человека около 2 тыс. митохондрий; их общий объём не менее 1/5 объёма К. Внешняя мембрана митохондрии отграничивает её от цитоплазмы, на внутренней — происходят основные энергетические превращения веществ, в результате которых образуется соединение, богатое энергией, — аденозинтрифосфорная кислота (АТФ) — универсальный переносчик энергии в К. Митохондрии содержат ДНК и способны к самовоспроизведению; однако автономность митохондрий относительна, их репродукция и деятельность зависят от ядра. За счет энергии АТФ в К. осуществляются различные синтезы, транспорт и выделение веществ, механическая работа, регуляция процессов и т.д. В делении К. и иногда в их движении участвуют структуры, имеющие вид трубочек субмикроскопических размеров. «Сборка» таких структур и их функционирование зависят от центриолей (См. Центриоли), при участии которых организуется Веретено деления клетки, с чем связано перемещение хромосом и ориентация оси деления К. Базальные тельца — производные центриолей — необходимы для построения и нормальной работы жгутиков и ресничек — локомоторных и чувствительных образований К., строение которых у простейших и в различных К. многоклеточных однотипно.
         От внеклеточной среды К. отделена плазматической мембраной, через которую происходит поступление ионов и молекул в К. и выделение их из К. Отношение поверхности К. к ее объему уменьшается с увеличением объема, и чем крупнее К., тем более затруднены ее связи с внешней средой. Величина К. не может быть особенно большой. Для живых К. характерен Активный транспорт ионов, требующий затраты энергии, специальных ферментов и, возможно, переносчиков. Благодаря активному и избирательному переносу в К. одних ионов и непрерывному удалению из нее других создается разность концентраций ионов в К. и окружающей среде. Этот эффект может быть обусловлен и связыванием ионов компонентами К. Многие ионы необходимы как активаторы внутриклеточных синтезов и как стабилизаторы структуры органоидов. Обратимые изменения соотношения ионов в К. и среде лежат в основе биоэлектрической активности К. — одного из важных факторов передачи сигналов от одной К. к другой (см. Биоэлектрические потенциалы). Образуя впячивания, которые затем замыкаются и отделяются в виде пузырьков внутрь К., плазматическая мембрана способна захватывать растворы крупных молекул (Пиноцитоз) или даже отдельные частицы величиной в несколько мкм (Фагоцитоз). Так осуществляется питание некоторых К., перенос веществ через К., захват бактерий фагоцитами. Со свойствами плазматической мембраны связаны и силы сцепления, удерживающие во многих случаях К. друг около друга, например в покровах тела или внутренних органах. Сцепление и связь К. обеспечиваются химическим взаимодействием мембран и специальными структурами мембраны — десмосомами (См. Десмосомы).
         Рассмотренная в общей форме схема строения К. свойственна в основных чертах как животным, так и растительным К.. Но есть и существенные отличия в особенностях метаболизма и строения растительных К. от животных.
         Клетки растений. Поверх плазматической мембраны растительные К. покрыты, как правило, твёрдой внешней оболочкой (она может отсутствовать лишь у половых К.), состоящей у большинства растений главным образом из полисахаридов: целлюлозы, пектиновых веществ и гемицеллюлоз, а у грибов и некоторых водорослей — из хитина. Оболочки снабжены порами, через которые с помощью выростов цитоплазмы соседние К. связаны друг с другом. Состав и строение оболочки меняются по мере роста и развития К. Часто у К., прекративших рост, оболочка пропитывается лигнином, кремнезёмом или др. веществом, которое делает её более прочной. Оболочки К. определяют механические свойства растения. К. некоторых растительных тканей отличаются особенно толстыми и прочными стенками (см. Древесина), сохраняющими свои скелетные функции после гибели К. Дифференцированные растительные К. имеют несколько вакуолей (См. Вакуоли) или одну центральную вакуоль, занимающую обычно большую часть объёма К. Содержимое вакуолей — раствор различных солей, углеводов, органических кислот, алкалоидов, аминокислот, белков, а также запас воды. В вакуолях могут откладываться питательные вещества. В цитоплазме растительной К. имеются специальные органоиды — Пластиды; лейкопласты (в них часто откладывается крахмал), хлоропласты (содержат преимущественно хлорофилл и осуществляют Фотосинтез) и хромопласты (содержат пигменты из группы каротиноидов). Пластиды, как и митохондрии, способны к самовоспроизведению. Комплекс Гольджи в растительной К. представлен рассеянными по цитоплазме диктиосомами (См. Диктиосомы).
         Одноклеточные организмы. В строении и функциях одноклеточных, или простейших, черты, свойственные любой К., сочетаются с признаками самостоятельных организмов. Так, у простейших такой же набор органоидов, как и у К. многоклеточных; идентично и ультрастроение их органоидов; при делении простейших в них обнаруживаются типичные хромосомы. Однако приспособление простейших к разным средам обитания (водной или наземной, к свободному или паразитическому существованию) обусловило существенное разнообразие их строения и физиологии. Многие простейшие (жгутиковые, инфузории) обладают сложным двигательным аппаратом и имеют органеллы, связанные с захватом пищи и пищеварением. Изучение простейших представляет большой интерес для выяснения филогенетических возможностей К.: эволюционные изменения организма протекают у них на клеточном уровне. В отличие от простейших и К. многоклеточных организмов, бактерии, синезеленые водоросли, актиномицеты не имеют оформленного ядра и хромосом. Их генетический аппарат, называется нуклеоидом, представлен нитями ДНК и не окружен оболочкой. Еще более отличаются от К. многоклеточных организмов и от простейших Вирусы, у которых отсутствуют основные, необходимые для обмена веществ ферменты. Поэтому вирусы могут расти и размножаться, лишь проникая в К. и используя их ферментные системы.
         Специальные функции клеток. В процессе эволюции многоклеточных возникло разделение функций между К., что привело к расширению возможностей приспособления животных и растений к меняющимся условиям среды. Закрепившиеся наследственно различия в форме К., их размерах и некоторых сторонах метаболизма реализуются в процессе индивидуального развития организма. Основное проявление развития — Дифференцировка К., их структурная и функциональная специализация. Дифференцированные К. имеют такой же набор хромосом, как и оплодотворенная яйцеклетка. Это доказывается пересадкой ядра дифференцированной К. в предварительно лишенную ядра яйцеклетку, после чего может развиваться полноценный организм. Таким образом, различия между дифференцированными К., по-видимому, обусловливаются разными соотношениями активных и неактивных генов, каждый из которых кодирует биосинтез определённого белка. Судя по составу белков, в дифференцированных К. активна (способна к транскрипции) лишь небольшая часть (порядка 10%) генов, свойственных К. данного вида организмов. Среди них лишь немногие ответственны за специальную функцию К., а остальные обеспечивают общеклеточные функции. Так, в мышечных К. активны гены, кодирующие структуру сократимых белков, в эритроидных К. — гены, кодирующие биосинтез гемоглобина, и т.д. Однако в каждой К. должны быть активны гены, определяющие биосинтез веществ и структур, необходимых для всех К., например ферментов, участвующих в энергетических превращениях веществ. В процессе специализации К. отдельные общеклеточные функции их могут развиваться особенно сильно. Так, в железистых К. более всего выражена синтетическая активность, мышечные — наиболее сократимы, нервные — наиболее возбудимы. В узкоспециализированных К. обнаруживаются структуры, характерные лишь для этих К. (например, у животных — миофибриллы мышц, тонофибриллы и реснички некоторых покровных К., нейрофибриллы нервных К., жгутики у простейших или у сперматозоидов многоклеточных организмов). Иногда специализация сопровождается утратой некоторых свойств (например, нервные К. утрачивают способность к размножению; ядра К. кишечного эпителия млекопитающих не могут в зрелом состоянии синтезировать РНК; зрелые эритроциты млекопитающих лишены ядра). Выполнение важных для организма функций включает иногда гибель К. Так, К. эпидермиса кожи постепенно ороговевают и гибнут, но остаются некоторое время в пласте, предохраняя подлежащие ткани от повреждения и инфекции. В сальных железах К. постепенно превращаются в капли жира, который используется организмом или выделяется. Для выполнения некоторых тканевых функций К. образуют неклеточные структуры. Основные пути их образования — секреция или превращения компонентов цитоплазмы. Так, значительная по объёму часть подкожной клетчатки, хряща и кости составляет межуточное вещество — производное К. соединительной ткани. К. крови обитают в жидкой среде (плазме крови), содержащей белки, сахара и др. вещества, вырабатываемые разными К. организма. К. эпителия, образующие пласт, окружены тонкой прослойкой диффузно распределённых веществ, главным образом гликопротеидов (так называемый цемент, или надмембранный компонент). Внешние покровы членистоногих и раковины моллюсков — также продукты выделения К. Взаимодействие специализированных К. — необходимое условие жизни организма и нередко самих этих К. (см. Гистология). Лишённые связей друг с другом, например в культуре, К. быстро утрачивают особенности присущих им специальных функций.
         Деление клеток. В основе способности К. к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом в процессе Митоза. В результате деления образуются две К., идентичные исходной по генетическим свойствам и с обновленным составом ядра и цитоплазмы. Процессы самовоспроизведения хромосом, их деления, образования двух ядер и деления цитоплазмы разделены во времени, составляя в совокупности Митотический цикл К. В случае, если после деления К. начинает готовиться к следующему делению, митотический цикл совпадает с жизненным циклом К. Однако во многих случаях после деления (а иногда перед ним) К. выходят из митотического цикла, дифференцируются и выполняют в организме ту или иную специальную функцию. Состав таких К. может обновляться за счёт делений малодифференцированных К. В некоторых тканях и дифференцированные К. способны повторно входить в митотический цикл. В нервной ткани дифференцированные К. не делятся; многие из них живут так же долго, как организм в целом, то есть у человека — несколько десятков лет. При этом ядра нервных К. не утрачивают способности к делению: будучи пересажены в цитоплазму раковых К., ядра нейронов синтезируют ДНК и делятся. Опыты с клетками-гибридами показывают влияние цитоплазмы на проявление ядерных функций. Неполноценная подготовка к делению предотвращает митоз или искажает его течение. Так, в некоторых случаях не происходит деления цитоплазмы и образуется двуядерная К. Многократное деление ядер в неделящейся К. приводит к появлению многоядерных К. или сложных надклеточных структур (симпластов), например в поперечнополосатых мышцах. Иногда репродукция К. ограничивается воспроизведением хромосом, и образуется полиплоидная К., имеющая удвоенный (сравнительно с исходной К.) набор хромосом. Полиплоидизация приводит к усилению синтетической активности, увеличению размеров и массы К.
         Обновление клеток. Для длительной работы каждой К. необходимо восстановление изнашиваемых структур, как и ликвидация повреждений К., вызванных внешними воздействиями. Восстановительные процессы, характерные для всех К., связаны с изменениями проницаемости плазматической мембраны и сопровождаются усилением внутриклеточных синтезов, в первую очередь синтеза белка. Во многих тканях стимуляция восстановительных процессов приводит к репродукции генетического аппарата и делению К.; это свойственно, например покровам или кроветворной системе. Процессы внутриклеточного обновления в этих тканях выражены слабо, их К. живут сравнительно недолго (например, К. кишечного покрова млекопитающих — всего несколько суток). Максимальной выраженности внутриклеточные восстановительные процессы достигают в неделящихся или слабоделящихся клеточных популяциях, например в нервных К. Показателем совершенства процессов внутреннего обновления К. является длительность их жизни; для многих нервных К. она совпадает с продолжительностью жизни всего организма.
         Мутации. Обычно процесс воспроизведения ДНК происходит без отклонений, и генетический код остаётся постоянным, что обеспечивает синтез одного и того же набора белков в огромном числе клеточных поколений. Однако в редких случаях может произойти мутация (См. Мутации) — частичное изменение структуры гена. Конечный её эффект — изменение свойств белков, кодируемых мутантными генами. Если при этом затрагиваются важные ферментные системы, свойства К., а иногда и всего организма существенно изменяются. Так, мутация одного из генов, контролирующих синтез гемоглобина, приводит к тяжелому заболеванию — анемии (См. Анемия). Естественный отбор полезных мутаций — важный механизм эволюции.
         Регуляция функций клеток. Основной механизм регуляции внутриклеточных процессов связан с различными влияниями на ферменты — высоко специфичные катализаторы биохимических реакций. Регуляция может осуществляться на генетическом уровне, когда определяется состав ферментов или количество того или иного фермента в К. В последнем случае регуляция может происходить и на уровне трансляции. Другой тип регуляции — воздействие на сам фермент, в результате чего может происходить как торможение, так и стимуляция его активности. Структурный уровень регуляции — влияние на сборку клеточных структур: мембран, рибосом и т.д. Конкретными регуляторами внутриклеточных процессов могут быть нервные влияния, гормоны, специальные вещества, вырабатываемые внутри К. либо окружающими К. (особенно белки), или же сами продукты реакций. В последнем случае воздействие осуществляется по принципу обратной связи, когда продукт реакции влияет на активность фермента — катализатора этой реакции. Регуляция может осуществляться через транспорт предшественников и ионов, влияния на матричный синтез (РНК, полисомы, ферменты синтеза), изменение формы регулируемого фермента.
         Организация и регуляция функций К. на молекулярном уровне определяют такие свойства живых систем, как пространственная компактность и энергетическая экономичность. Важное свойство многоклеточных организмов — надёжность — во многом зависит от множественности (взаимозаменяемости) К. каждого функционального типа, а также от возможности их замены в результате размножения К. и обновления компонентов каждой К.
         В медицине используются воздействия на К. для лечения и предупреждения заболеваний. Многие лекарственные вещества изменяют активность определенных К. Так, наркотики, транквилизаторы и болеутоляющие вещества снижают интенсивность деятельности нервных К., а стимуляторы её усиливают. Некоторые вещества стимулируют сокращение мышечных К. сосудов, другие — матки или сердца. Специальные воздействия на делящиеся К. осуществляются при использовании радиации или цитостатических веществ, блокирующих деление К. Иммунизация стимулирует деятельность лимфоидных К., вырабатывающих антитела к чужеродным белкам, предупреждая тем самым многие заболевания.
         Лит.: Кольцов Н. К., Организация клетки, М. — Л., 1936; Вильсон Э., Клетка и её роль в развитии и наследственности, пер. с англ., т. 1—2, М. — Л., 1936—1940; Насонов Д. Н. и Александров В. Я., Реакция живого вещества на внешние воздействия, М. — Л., 1940; Кедровский Б. В., Цитология белковых синтезов в животной клетке, М., 1959; Мэзия Д., Митоз и физиология клеточного деления, пер. с англ., М., 1963; Руководство по цитологии, т. 1—2, М. — Л., 1965—66; Бродский В. Я., Трофика клетки, М., 1966; Живая клетка, [Сб. ст.], пер. с англ., М., 1966; Де Робертис Э., Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1967; Васильев Ю. М. и Маленков А. Г., Клеточная поверхность и реакции клеток, Л., 1968; Алов И. А., Брауде А. И., Аспиз М. Е., Основы функциональной морфологии клетки, 2 изд., М., 1969; Лёви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971; Handbook of molecular cytology, ed. A. Lima-de-Faria, Amst., 1969.
         В. Я. Бродский.
         0246822607.tif
        Рис. 1. Общий вид эпителиальной клетки животного при различном увеличении: а — в оптический микроскоп; б — при малом увеличении электронного микроскопа; в — при большом увеличении. Структуры ядра: 1 — ядрышко; 2 — хроматин (участки хромосом); 3 — ядерная оболочка. Структуры цитоплазмы: 4 — рибосомы; 5 — гранулярная (покрытая рибосомами) эндоплазматическая сеть; 6 — гладкоконтурная сеть; 7 — комплекс Гольджи; 8 — митохондрии; 9 — мультивезикулярные (многопузырьковые) тела; 10 — секреторные гранулы; 11 — жировые включения; 12 — плазматическая мембрана; 13 — десмосома.
         0259068550.tif
        Рис. 2. Схема строения клетки образовательной ткани (меристемы) растения: 1 — клеточная стенка; 2 — плазмодесмы; 3 — плазматическая мембрана; 4 — эндоплазматическая сеть; 5 — вакуоли; 6 — рибосомы; 7 — митохондрии; 8 — пластида; 9 — комплекс Гольджи; 10 — оболочка ядра; 11 — поры в ядерной оболочке; 12 — хроматин; 13 — ядрышко.
         0262882461.tif
        Рис. 3. Разнообразие клеток высших растений: а, б — меристематические клетки; в — крахмалоносная клетка из запасающей паренхимы; г — клетка эпидермиса; д — двуядерная клетка секреторного слоя пыльцевого гнезда; е — клетка ассимиляционной ткани листа с хлоропластами; ж — членик ситовидной трубки с клеткой-спутницей; з — каменистая клетка; и — членик сосуда.
        Клетки щитовидной железы крысы с включениями (увеличено в 18000 раз). Условные обозначения: 1 — ядро, 2 — ядерная оболочка, 3 — клеточная оболочка, 4 — эндоплазматическая сеть, 5 — митохондрии, 6 — комплекс Гольджи, 7 — плотные тела, 8 — рибосомы.
        Специализированная форма мембран (пористые пластинки) в цитоплазме созревающей яйцеклетки севрюги (увеличено в 35000 раз). Условные обозначения: 5 — митохондрии, 9 — пористые пластинки.
        Поперечный срез мышечных клеток саранчи (увеличено в 54000 раз). Условные обозначения: 5 — митохондрии, 10 — миофибриллы.
        Участки двух клеток щитовидной железы крысы (увеличено в 30000 раз). Условные обозначения: 3 — клеточная оболочка, 4 — эндоплазматическая сеть, 5 — митохондрии, 6 — комплекс Гольджи.
        Разнообразие животных и растительных клеток: 1 — клетка печени аксолотля, в цитоплазме — красные митохондрии и фиолетовые белковые включения, в ядре — красное ядрышко и синие глыбки хроматина; 2 — хроматофор аксолотля, заполненный гранулами пигмента; 3 — эритроциты лягушки; 4 — клетка Пуркине мозжечка крысы; 5 — клетка водоросли спирогиры.
        Разнообразие животных и растительных клеток: 1 — клетки почки лягушки, видны митохондрии; 2 — чувствительная клетка спинномозгового ганглия человека, виден комплекс Гольджи; 3 — мегакариоцит из костного мозга человека; 4 — жировая клетка из подкожной клетчатки крысы; 5 — клетки поджелудочной железы человека, видны комплекс Гольджи и секреторные гранулы; 6 — нейтрофильный лейкоцит человека; 7 — гладкая мышечная клетка кишечника человека; 8 — тучные клетки в рыхлой соединительной ткани крысы; 9 — эритроциты человека; 10 — эритроциты верблюда; 11 — малая и большая пирамидальные клетки коры головного мозга человека; 12 — эритроциты курицы; 13 — клетка волоска тычиночной нити традесканции; 14 — клетки листа элодеи; 15 — клетка плода ландыша; 16 — эритроциты свиньи.
Мультимедийная энциклопедия
элементарная единица живого. Клетка отграничена от других клеток или от внешней среды специальной мембраной и имеет ядро или его эквивалент, в котором сосредоточена основная часть химической информации, контролирующей наследственность. Изучением строения клетки занимается цитология, функционированием - физиология. Наука, изучающая состоящие из клеток ткани, называется гистологией. Существуют одноклеточные организмы, тело которых целиком состоит из одной клетки. К этой группе относятся бактерии и протисты (простейшие животные и одноклеточные водоросли). Иногда их также называют бесклеточными, но термин одноклеточные употребляется чаще. Настоящие многоклеточные животные (Metazoa) и растения (Metaphyta) содержат множество клеток. Абсолютное большинство тканей состоит из клеток, однако имеются и некоторые исключения. Тело слизевиков (миксомицетов), например, состоит из однородной, не разделенной на клетки субстанции с многочисленными ядрами. Сходным образом организованы и некоторые животные ткани, в частности сердечная мышца. Вегетативное тело (таллом) грибов образовано микроскопическими нитями - гифами, нередко сегментированными; каждая такая нить может считаться эквивалентом клетки, хотя и нетипичной формы. Некоторые не участвующие в метаболизме структуры тела, в частности раковины, жемчужины или минеральная основа костей, образованы не клетками, а продуктами их секреции. Другие, например древесина, кора, рога, волосы и наружный слой кожи, - не секреторного происхождения, а образованы из мертвых клеток. Мелкие организмы, такие, как коловратки, состоят всего из нескольких сотен клеток. Для сравнения: в человеческом организме насчитывается ок. 1014 клеток, в нем каждую секунду погибают и замещаются новыми 3 млн. эритроцитов, и это всего одна десятимиллионная часть от общего количества клеток тела. Обычно размеры растительных и животных клеток колеблются в пределах от 5 до 20 мкм в поперечнике. Типичная бактериальная клетка значительно меньше - ок. 2 мкм, а наименьшая из известных - 0,2 мкм. Некоторые свободноживущие клетки, например такие простейшие, как фораминиферы, могут достигать нескольких сантиметров; они всегда имеют много ядер. Клетки тонких растительных волокон достигают в длину одного метра, а отростки нервных клеток достигают у крупных животных нескольких метров. При такой длине объем этих клеток небольшой, а поверхность очень велика. Самые крупные клетки - это неоплодотворенные яйца птиц, заполненные желтком. Наибольшее яйцо (и, следовательно, наибольшая клетка) принадлежало вымершей громадной птице - эпиорнису (Aepyornis). Предположительно его желток весил ок. 3,5 кг. Самое крупное яйцо у ныне живущих видов принадлежит страусу, его желток весит ок. 0,5 кг. См. также ЯЙЦО. Как правило, клетки крупных животных и растений лишь немногим больше клеток мелких организмов. Слон больше мыши не потому, что его клетки крупнее, а в основном потому, что самих клеток значительно больше. Существуют группы животных, например коловратки и нематоды, у которых количество клеток в организме остается постоянным. Таким образом, хотя крупные виды нематод имеют большее количество клеток, чем мелкие, основное различие в размерах обусловлено в этом случае все же большими размерами клеток. В пределах данного типа клеток их размеры обычно зависят от плоидности, т.е. от числа наборов хромосом, присутствующих в ядре. Тетраплоидные клетки (с четырьмя наборами хромосом) в 2 раза больше по объему, чем диплоидные клетки (с двойным набором хромосом). Плоидность растения можно увеличить путем введения в него растительного препарата колхицина. Поскольку подвергнутые такому воздействию растения имеют более крупные клетки, они и сами крупнее. Однако это явление можно наблюдать только на полиплоидах недавнего происхождения. У эволюционно древних полиплоидных растений размеры клеток подвержены "обратной регуляции" в сторону нормальных величин несмотря на увеличение числа хромосом. СТРУКТУРА КЛЕТКИ Одно время клетка рассматривалась как более или менее гомогенная капелька органического вещества, которую называли протоплазмой или живой субстанцией. Этот термин устарел после того, как выяснилось, что клетка состоит из множества четко обособленных структур, получивших название клеточных органелл ("маленьких органов"). Химический состав. Обычно 70-80 % массы клетки составляет вода, в которой растворены разнообразные соли и низкомолекулярные органические соединения. Наиболее характерные компоненты клетки - белки и нуклеиновые кислоты. Некоторые белки являются структурными компонентами клетки, другие - ферментами, т.е. катализаторами, определяющими скорость и направление протекающих в клетках химических реакций. Нуклеиновые кислоты служат носителями наследственной информации, которая реализуется в процессе внутриклеточного синтеза белков. См. также НУКЛЕИНОВЫЕ КИСЛОТЫ. Часто клетки содержат некоторое количество запасных веществ, служащих пищевым резервом. Растительные клетки в основном запасают крахмал - полимерную форму углеводов. В клетках печени и мышц запасается другой углеводный полимер - гликоген. К часто запасаемым продуктам относится также жир, хотя некоторые жиры выполняют иную функцию, а именно служат важнейшими структурными компонентами. Белки в клетках (за исключением клеток семян) обычно не запасаются. Описать типичный состав клетки не представляется возможным прежде всего потому, что существуют большие различия в количестве запасаемых продуктов и воды. В клетках печени содержится, например, 70% воды, 17% белков, 5% жиров, 2% углеводов и 0,1% нуклеиновых кислот; оставшиеся 6% приходятся на соли и низкомолекулярные органические соединения, в частности аминокислоты. Растительные клетки обычно содержат меньше белков, значительно больше углеводов и несколько больше воды; исключение составляют клетки, находящиеся в состоянии покоя. Покоящаяся клетка пшеничного зерна, являющегося источником питательных веществ для зародыша, содержит ок. 12% белков (в основном это запасаемый белок), 2% жиров и 72% углеводов. Количество воды достигает нормального уровня (70-80%) только в начале прорастания зерна. основные клеточные структуры. изображены основные клеточные структуры. Главные части клетки. Некоторые клетки, в основном растительные и бактериальные, имеют наружную клеточную стенку. У высших растений она состоит из целлюлозы. Стенка окружает собственно клетку, защищая ее от механических воздействий. Клетки, в особенности бактериальные, могут также секретировать слизистые вещества, образуя тем самым вокруг себя капсулу, которая, как и клеточная стенка, выполняет защитную функцию. Именно с разрушением клеточных стенок связана гибель многих бактерий под действием пенициллина. Дело в том, что внутри бактериальной клетки концентрация солей и низкомолекулярных соединений очень высока, а потому в отсутствие укрепляющей стенки вызванный осмотическим давлением приток воды в клетку может привести к ее разрыву. Пенициллин, препятствующий во время роста клетки формированию ее стенки, как раз и приводит к разрыву (лизису) клетки. Клеточные стенки и капсулы не участвуют в метаболизме, и часто их удается отделить, не убивая клетку. Таким образом, их можно считать наружными вспомогательными частями клетки. У клеток животных клеточные стенки и капсулы, как правило, отсутствуют. Собственно клетка состоит из трех основных частей. Под клеточной стенкой, если она имеется, находится клеточная мембрана. Мембрана окружает гетерогенный материал, называемый цитоплазмой. В цитоплазму погружено круглое или овальное ядро. Ниже мы рассмотрим более подробно структуру и функции этих частей клетки. КЛЕТОЧНАЯ МЕМБРАНА Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки. Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Головы молекул гидрофильные, т.е. обладают сродством к воде, а их углеводородные хвосты гидрофобны. Поэтому при смешивании с водой липиды образуют на ее поверхности пленку, аналогичную пленке масла; при этом все их молекулы ориентированы одинаково: головы молекул - в воде, а углеводородные хвосты - над ее поверхностью. В клеточной мембране два таких слоя, и в каждом из них головы молекул обращены наружу, а хвосты - внутрь мембраны, один к другому, не соприкасаясь таким образом с водой. Толщина такой мембраны ок. 7 нм. Кроме основных липидных компонентов, она содержит крупные белковые молекулы, которые способны "плавать" в липидном бислое и расположены так, что одна их сторона обращена внутрь клетки, а другая соприкасается с внешней средой. Некоторые белки находятся только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой. Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. Поскольку мембрана физически в какой-то мере похожа на масло, вещества, растворимые в масле или в органических растворителях, например эфир, легко проходят сквозь нее. То же относится и к таким газам, как кислород и диоксид углерода. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной. Например, в крови концентрация ионов натрия высокая, а ионов калия - низкая, тогда как во внутриклеточной жидкости эти ионы присутствуют в обратном соотношении. Аналогичная ситуация характерна и для многих других химических соединений. Очевидно, что клетка тем не менее не может быть полностью изолирована от окружающей среды, так как должна получать вещества, необходимые для метаболизма, и избавляться от его конечных продуктов. К тому же липидный бислой не является полностью непроницаемым даже для водорастворимых веществ, а пронизывающие его т.н. "каналообразующие" белки создают поры, или каналы, которые могут открываться и закрываться (в зависимости от изменения конформации белка) и в открытом состоянии проводят определенные иона (Na+, K+, Ca2+) по градиенту концентрации. Следовательно, разница концентраций внутри клетки и снаружи не может поддерживаться исключительно за счет малой проницаемости мембраны. На самом деле в ней имеются белки, выполняющие функцию молекулярного "насоса": они транспортируют некоторые вещества как внутрь клетки, так и из нее, работая против градиента концентрации. В результате, когда концентрация, например, аминокислот внутри клетки высокая, а снаружи низкая, аминокислоты могут тем не менее поступать из внешней среды во внутреннюю. Такой перенос называется активным транспортом, и на него затрачивается энергия, поставляемая метаболизмом. Мембранные насосы высокоспецифичны: каждый из них способен транспортировать либо только ионы определенного металла, либо аминокислоту, либо сахар. Специфичны также и мембранные ионные каналы. Такая избирательная проницаемость физиологически очень важна, и ее отсутствие - первое свидетельство гибели клетки. Это легко проиллюстрировать на примере свеклы. Если живой корень свеклы погрузить в холодную воду, то он сохраняет свой пигмент; если же свеклу кипятить, то клетки погибают, становятся легко проницаемыми и теряют пигмент, который и окрашивает воду в красный цвет. Крупные молекулы типа белковых клетка может "заглатывать". Под влиянием некоторых белков, если они присутствуют в жидкости, окружающей клетку, в клеточной мембране возникает впячивание, которое затем смыкается, образуя пузырек - небольшую вакуоль, содержащую воду и белковые молекулы; после этого мембрана вокруг вакуоли разрывается, и содержимое попадает внутрь клетки. Такой процесс называется пиноцитозом (буквально "питье клетки"), или эндоцитозом. Более крупные частички, например частички пищи, могут поглощаться аналогичным образом в ходе т.н. фагоцитоза. Как правило, вакуоль, образующаяся при фагоцитозе, крупнее, и пища переваривается ферментами лизосом внутри вакуоли до разрыва окружающей ее мембраны. Такой тип питания характерен для простейших, например для амеб, поедающих бактерий. Однако способность к фагоцитозу свойственна и клеткам кишечника низших животных, и фагоцитам - одному из видов белых кровяных клеток (лейкоцитов) позвоночных. В последнем случае смысл этого процесса заключается не в питании самих фагоцитов, а в разрушении ими бактерий, вирусов и другого инородного материала, вредного для организма. Функции вакуолей могут быть и другими. Например, простейшие, живущие в пресной воде, испытывают постоянный осмотический приток воды, так как концентрация солей внутри клетки гораздо выше, чем снаружи. Они способны выделять воду в специальную экскретирующую (сократительную) вакуоль, которая периодически выталкивает свое содержимое наружу. В растительных клетках часто имеется одна большая центральная вакуоль, занимающая почти всю клетку; цитоплазма при этом образует лишь очень тонкий слой между клеточной стенкой и вакуолью. Одна из функций такой вакуоли - накопление воды, позволяющее клетке быстро увеличиваться в размерах. Эта способность особенно необходима в период, когда растительные ткани растут и образуют волокнистые структуры. В тканях в местах плотного соединения клеток их мембраны содержат многочисленные поры, образованные пронизывающими мембрану белками - т.н. коннексонами. Поры прилежащих клеток располагаются друг против друга, так что низкомолекулярные вещества могут перегодить из клетки в клетку - эта химическая система коммуникации координирует их жизнедеятельность. Один из примеров такой координации - наблюдаемое во многих тканях более или менее синхронное деление соседних клеток. белковых молекул относительно двойного слоя липидных молекул. Белки большинства клеток, расположенные на поверхности липидного бислоя или погруженные в него, могут несколько смещаться в боковом направлении. В клеточной мембране высших организмов присутствует также холестерин. ЦИТОПЛАЗМА В цитоплазме имеются внутренние мембраны, сходные с наружной и образующие органеллы различного типа. Эти мембраны можно рассматривать как складки наружной мембраны; иногда внутренние мембраны составляют единое целое с наружной, но часто внутренняя складка отшнуровывается, и контакт с наружной мембраной прерывается. Однако даже в случае сохранения контакта внутренняя и наружная мембраны не всегда химически идентичны. В особенности различается состав мембранных белков в разных клеточных органеллах. Эндоплазматический ретикулум. Состоящая из канальцев и пузырьков сеть внутренних мембран тянется от поверхности клетки до ядра. Эта сеть называется эндоплазматическим ретикулумом. Часто отмечалось, что канальцы открываются на поверхности клетки, и эндоплазматический ретикулум, таким образом, играет роль микроциркуляторного аппарата, через который внешняя среда может непосредственно взаимодействовать со всем содержимым клетки. Такое взаимодействие было обнаружено в некоторых клетках, в частности в мышечных, но пока не ясно, является ли оно универсальным. Во всяком случае транспорт ряда веществ по этим канальцам из одной части клетки в другую действительно происходит. Крошечные тельца, называемые рибосомами, покрывают поверхность эндоплазматического ретикулума, особенно вблизи ядра. Диаметр рибосом ок. 15 нм, они состоят наполовину из белков, наполовину из рибонуклеиновых кислот. Их основная функция - синтез белков; к их поверхности прикрепляются матричная (информационная) РНК и аминокислоты, связанные с транспортными РНК. Участки ретикулума, покрытые рибосомами, называют шероховатым эндоплазматическим ретикулумом, а лишенные их - гладким. Кроме рибосом, на эндоплазматическом ретикулуме адсорбированы или иным образом к нему присоединены различные ферменты, в том числе системы ферментов, обеспечивающих использование кислорода для образования стеролов и для обезвреживания некоторых ядов. В неблагоприятных условиях эндоплазматический ретикулум быстро дегенерирует, и поэтому его состояние служит чувствительным индикатором здоровья клетки. Аппарат Гольджи. Аппарат Гольджи (комплекс Гольджи) - это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольджи относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы. Лизосомы - это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы, в частности белковые. Из-за своего разрушительного действия эти ферменты как бы "заперты" в лизосомах и высвобождаются только по мере надобности. Так, при внутриклеточном пищеварении ферменты выделяются из лизосом в пищеварительные вакуоли. Лизосомы бывают необходимы и для разрушения клеток; например, во время превращения головастика во взрослую лягушку высвобождение лизосомных ферментов обеспечивает разрушение клеток хвоста. В данном случае это нормально и полезно для организма, но иногда такое разрушение клеток носит патологический характер. Например, при вдыхании асбестовой пыли она может проникнуть в клетки легких, и тогда происходит разрыв лизосом, разрушение клеток и развивается легочное заболевание. Митохондрии и хлоропласты. Митохондрии - относительно крупные мешковидные образования с довольно сложной структурой. Они состоят из матрикса, окруженного внутренней мембраной, межмембранного пространства и наружной мембраны. Внутренняя мембрана сложена в складки, называемые кристами. На кристах размещаются скопления белков. Многие из них - ферменты, катализирующие окисление продуктов распада углеводов; другие катализируют реакции синтеза и окисления жиров. Вспомогательные ферменты, участвующие в этих процессах, растворены в матриксе митохондрий. В митохондриях протекает окисление органических веществ, сопряженное с синтезом аденозинтрифосфата (АТФ). Распад АТФ с образованием аденозиндифосфата (АДФ) сопровождается выделением энергии, которая расходуется на различные процессы жизнедеятельности, например на синтез белков и нуклеиновых кислот, транспорт веществ внутрь клетки и из нее, передачу нервных импульсов или мышечное сокращение. Митохондрии, таким образом, являются энергетическими станциями, перерабатывающими "топливо" - жиры и углеводы - в такую форму энергии, которая может быть использована клеткой, а следовательно, и организмом в целом. Растительные клетки тоже содержат митохондрии, но основной источник энергии для yих клеток - свет. Световая энергия используется этими клетками для образования АТФ и синтеза углеводов из диоксида углерода и воды. (См. также ФОТОСИНТЕЗ.) Хлорофилл - пигмент, аккумулирующий световую энергию, - находится в хлоропластах. Хлоропласты, подобно митохондриям, имеют внутреннюю и наружную мембраны. Из выростов внутренней мембраны в процессе развития хлоропластов возникают т.н. тилакоидные мембраны; последние образуют уплощенные мешочки, собранные в стопки наподобие столбика монет; эти стопки, называемые гранами, содержат хлорофилл. Кроме хлорофилла, в хлоропластах имеются и все другие компоненты, необходимые для фотосинтеза. Некоторые специализированные хлоропласты не осуществляют фотосинтез, а несут другие функции, например обеспечивают запасание крахмала или пигментов. Относительная автономия. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, так же, как и сами клетки, которые возникают только из клеток, митохондрии и хлоропласты образуются только из предсуществующих митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок- синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Частичная генетическая автономия рассматриваемых органелл и особенности их белок-синтезирующих систем послужили основой для предположения, что митохондрии и хлоропласты произошли от симбиотических бактерий, которые поселились в клетках 1-2 млрд. лет назад. Современным примером такого симбиоза могут служить мелкие фотосинтезирующие водjросли, которые живут внутри клеток некоторых кораллов и моллюсков. Водоросли обеспечивают своих хозяев кислородом, а от них получают питательные вещества. Фибриллярные структуры. Цитоплазма клетки представляет собой вязкую жидкость, поэтому можно ожидать, что из-за поверхностного натяжения клетка должна иметь сферическую форму, за исключением тех случаев, когда клетки плотно упакованы. Однако обычно этого не наблюдается. Многие простейшие имеют плотные покровы или оболочки, которые придают клетке определенную, несферическую форму. Тем не менее даже без оболочки клетки могут поддерживать несферическую форму из-за того, что цитоплазма структурируется с помощью многочисленных, довольно жестких, параллельно расположенных волокон. Последние образованы полыми микротрубочками, которые состоят из белковых единиц, организованных в виде спирали. Некоторые простейшие образуют псевдоподии - длинные тонкие цитоплазматические выросты, которыми они захватывают пищу. Псевдоподии сохраняют свою форму благодаря жесткости микротрубочек. Если гидростатическое давление возрастает примерно до 100 атмосфер, микротрубочки распадаются и клетка приобретает форму капли. Когда же давление возвращается к норме, вновь идет сборка микротрубочек и клетка образует псевдоподии. Сходным образом на изменение давления реагируют и многие другие клетки, что подверждает участие микротрубочек в сохранении формы клетки. Сборка и распад микротрубочек, необходимые для того, чтобы клетка могла быстро менять форму, происходят и в отсутствие изменений давления. Из микротрубочек формируются также фибриллярные структуры, служащие органами движения клетки. У некоторых клеток имеются бичевидные выросты, называемые жгутиками, или же реснички - их биение обеспечивает движение клетки в воде. Если клетка неподвижна, эти структуры гонят воду, частицы пищи и другие частицы к клетке или от клетки. Жгутики относительно крупные, и обычно клетка имеет только один, изредка несколько жгутиков. Реснички гораздо мельче и покрывают всю поверхность клетки. Хотя эти структуры свойственны главным образом простейшим, они могут присутствовать и у высокоорганизованных форм. В человеческом организме ресничками выстланы все дыхательные пути. Попадающие в них небольшие частички обычно улавливаются слизью на клеточной поверхности, и реснички продвигают их вместе со слизью наружу, защищая таким образом легкие. Мужские половые клетки большинства животных и некоторых низших растений движутся с помощью жгутика. Существуют и другие типы клеточного движения. Один из них - амебоидное движение. Амеба, а также некоторые клетки многоклеточных организмов "перетекают" с места на место, т.е. движутся за счет тока содержимого клетки. Постоянный ток вещества существует и внутри растительных клеток, однако он не влечет за собой передвижения клетки в целом. Наиболее изученный тип клеточного движения - сокращение мышечных клеток; оно осуществляется путем скольжения фибрилл (белковых нитей) относительно друг друга, что приводит к укорочению клетки. ЯДРО Ядро окружено двойной мембраной. Очень узкое (порядка 40 нм) пространство между двумя мембранами называется перинуклеарным. Мембраны ядра переходят в мембраны эндоплазматического ретикулума, а перинуклеарное пространство открывается в ретикулярное. Обычно ядерная мембрана имеет очень узкие поры. По-видимому, через них осуществляется перенос крупных молекул, таких, как информационная РНК, которая синтезируется на ДНК, а затем поступает в цитоплазму. Основная часть генетического материала находится в хромосомах клеточного ядра. Хромосомы состоят из длинных цепей двуспиральной ДНК, к которой прикрепляются основные (т.е. обладающие щелочными свойствами) белки. Иногда в хромосомах имеется несколько идентичных цепей ДНК, лежащих рядом друг с другом, - такие хромосомы называются политенными (многонитчатыми). Число хромосом у разных видов неодинаково. Диплоидные клетки тела человека содержат 46 хромосом, или 23 пары. В неделящейся клетке хромосомы прикреплены в одной или нескольких точках к ядерной мембране. В обычном неспирализованном состоянии хромосомы настолько тонки, что не видны в световой микроскоп. На определенных локусах (участках) одной или нескольких хромосом формируется присутствующее в ядрах большинства клеток плотное тельце - т.н. ядрышко. В ядрышках происходит синтез и накопление РНК, используемой для построения рибосом, а также некоторых других типов РНК. ДЕЛЕНИЕ КЛЕТКИ Хотя все клетки появляются путем деления предшествующей клетки, не все они продолжают делиться. Например, нервные клетки мозга, однажды возникнув, уже не делятся. Их количество постепенно уменьшается; поврежденные ткани мозга не способны восстанавливаться путем регенерации. Если же клетки продолжают делиться, то им свойствен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза. Сама интерфаза состоит из трех фаз: G1, S и G2. Ниже указана их продолжительность, типичная для растительных и животных клеток. G1 (4-8 ч). Это фаза начинается сразу после рождения клетки. На протяжении фазы G1 клетка, за исключением хромосом (которые не изменяются), увеличивает свою массу. Если клетка в дальнейшем не делится, то остается в этой фазе. S (6-9 ч). Масса клетки продолжает увеличиваться, и происходит удвоение (дупликация) хромосомной ДНК. Тем не менее хромосомы остаются одинарными по структуре, хотя и удвоенными по массе, так как две копии каждой хромосомы (хроматиды) все еще соединены друг с другом по всей длине. G2. Масса клетки продолжает увеличиваться до тех пор, пока она приблизительно вдвое не превысит начальную, а затем наступает митоз. МИТОЗ После того как хромосомы удвоились, каждая из дочерних клеток должна получить полный набор хромосом. Простое деление клетки не может этого обеспечить - такой результат достигается посредством процесса, называемого митозом. Если не вдаваться в детали, то началом этого процесса следует считать выстраивание хромосом в экваториальной плоскости клетки. Затем каждая хромосома продольно расщепляется на две хроматиды, которые начинают расходиться в противоположных направлениях, становясь самостоятельными хромосомами. В итоге на двух концах клетки располагается по полному набору хромосом. Далее клетка делится на две, и каждая дочерняя клетка получает полный набор хромосом. Ниже приводится описание митоза в типичной животной клетке. Его принято разделять на четыре стадии. I. Профаза. Особая клеточная структура - центриоль - удваивается (иногда это удвоение происходит в S-периоде интерфазы), и две центриоли начинают расходиться к противоположным полюсам ядра. Ядерная мембрана разрушается; одновременно специальные белки объединяются (агрегируют), формируя микротрубочки в виде нитей. Центриоли, расположенные теперь на противоположных полюсах клетки, оказывают организующее воздействие на микротрубочки, которые в результате выстраиваются радиально, образуя структуру, напоминающую по внешнему виду цветок астры ("звезда"). Другие нити из микротрубочек протягиваются от одной центриоли к другой, образуя т.н. веретено деления. В это время хромосомы находятся в спирализованном состоянии, напоминая пружину. Они хорошо видны в световом микроскопе, особенно после окрашивания. В профазе хромосомы расщепляются, но хроматиды все еще остаются скрепленными попарно в зоне центромеры - хромосомной органеллы, сходной по функциям с центриолью. Центромеры тоже оказывают организующее воздействие на нити веретена, которые теперь тянутся от центриоли к центромере и от нее к другой центриоли. II. Метафаза. Хромосомы, до этого момента расположенные беспорядочно, начинают двигаться, как бы влекомые нитями веретена, прикрепленными к их центромерам, и постепенно выстраиваются в одной плоскости в определенном положении и на равном расстоянии от обоих полюсов. Лежащие в одной плоскости центромеры вместе с хромосомами образуют т.н. экваториальную пластинку. Центромеры, соединяющие пары хроматид, делятся, после чего сестринские хромосомы полностью разъединяются. III. Анафаза. Хромосомы каждой пары движутся в противоположных направлениях к полюсам, их как бы тащат нити веретена. При этом образуются нити и между центромерами парных хромосом. IV. Телофаза. Как только хромосомы приближаются к противоположным полюсам, сама клетка начинает делиться вдоль плоскости, в которой находилась экваториальная пластинка. В итоге образуются две клетки. Нити веретена разрушаются, хромосомы раскручиваются и становятся невидимыми, вокруг них формируется ядерная мембрана. Клетки возвращаются в фазу G1 интерфазы. Весь процесс митоза занимает около часа. Детали митоза несколько варьируют в разных типах клеток. В типичной растительной клетке образуется веретено, но отсутствуют центриоли. У грибов митоз происходит внутри ядра, без предшествующего распада ядерной мембраны. Деление самой клетки, называемое цитокинезом, не имеет жесткой связи с митозом. Иногда один или несколько митозов проходят без клеточного деления; в результате образуются многоядерные клетки, часто встречающиеся у водорослей. Если из яйцеклетки морского ежа удалить путем микроманипуляций ядро, то веретено после этого продолжает формироваться и яйцеклетка продолжает делиться. Это показывает, что наличие хромосом не является необходимым условием для деления клетки. Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием. Его наиболее важный аспект - генетический: при таком размножении не происходит расхождения наследственных факторов у потомства. Образующиеся дочерние клетки генетически в точности такие же, как и материнская. Митоз - это единственный способ самовоспроизведения у видов, не имеющих полового размножения, например у многих одноклеточных. Тем не менее даже у видов с половым размножением клетки тела делятся посредством митоза и происходят от одной клетки - оплодотворенного яйца, а потому все они генетически идентичны. Высшие растения могут размножаться бесполым путем (с помощью митоза) саженцами и усами (известный пример - клубника). четыре стадии. Между митотическими делениями клетка находится в стадии интерфазы. МЕЙОЗ Половое размножение организмов осуществляется с помощью специализированных клеток, т.н. гамет, - яйцеклетки (яйца) и спермия (сперматозоида). Гаметы, сливаясь, образуют одну клетку - зиготу. Каждая гамета гаплоидна, т.е. имеет по одному набору хромосом. Внутри набора все хромосомы разные, однако каждой хромосоме яйцеклетки соответствует одна из хромосом спермия. Зигота, таким образом, содержит уже пару таких соответствующих друг другу хромосом, которые называют гомологичными. Гомологичные хромосомы сходны, поскольку имеют одни и те же гены или их варианты (аллели), определяющие специфические признаки. Например, одна из парных хромосом может иметь ген, кодирующий группу крови А, а другая - его вариант, кодирующий группу крови В. Хромосомы зиготы, происходящие из яйцеклетки, являются материнскими, а происходящие из спермия - отцовскими. В результате многократных митотических делений из образовавшейся зиготы возникает либо многоклеточный организм, либо многочисленные свободноживущие клетки, как это происходит у обладающих половым размножением простейших и у одноклеточных водорослей. При образовании гамет диплоидный набор хромосом, имевшийся у зиготы, должен наполовину уменьшиться (редуцироваться). Если бы этого не происходило, то в каждом поколении слияние гамет приводило бы к удвоению набора хромосом. Редукция до гаплоидного числа хромосом происходит в результате редукционного деления - т.н. мейоза, который представляет собой вариант митоза. гамет. Он свойствен всем растениям и животным, размножающимся половым путем. Расщепление и рекомбинация. Особенность мейоза состоит в том, что при клеточном делении экваториальную пластинку образуют пары гомологичных хромосом, а не удвоенные индивидуальные хромосомы, как при митозе. Парные хромосомы, каждая из которых осталась одинарной, расходятся к противоположным полюсам клетки, клетка делится, и в результате дочерние клетки получают половинный, по сравнению с зиготой, набор хромосом. Для примера предположим, что гаплоидный набор состоит из двух хромосом. В зиготе (и соответственно во всех клетках организма, продуцирующего гаметы) присутствуют материнские хромосомы А и В и отцовские А' и В'. Во время мейоза они могут разделиться следующим образом: Наиболее важен в этом примере тот факт, что при расхождении хромосом вовсе не обязательно образуется исходный материнский и отцовский набор, а возможна рекомбинация генов, как в гаметах АВ' и А'В в приведенной схеме. Теперь предположим, что пара хромосом АА' содержит два аллеля - a и b - гена, определяющего группы крови А и В. Сходным образом пара хромосом ВВ' содержит аллели m и n другого гена, определяющего группы крови M и N. Разделение этих аллелей может идти следующим образом: Очевидно, что получившиеся гаметы могут содержать любую из следующих комбинаций аллелей двух генов: am, bn, bm или an. Если имеется большее число хромосом, то пары аллелей будут расщепляться независимо по тому же принципу. Это означает, что одни и те же зиготы могут продуцировать гаметы с различными комбинациями аллелей генов и давать начало разным генотипам в потомстве. Мейотическое деление. Оба приведенных примера иллюстрируют принцип мейоза. На самом деле мейоз - значительно более сложный процесс, так как включает два последовательных деления. Главное в мейозе то, что хромосомы удваиваются только один раз, тогда как клетка делится дважды, в результате чего происходит редукция числа хромосом и диплоидный набор превращается в гаплоидный. Во время профазы первого деления гомологичные хромосомы конъюгируют, т. е. сближаются попарно. В результате этого очень точного процесса каждый ген оказывается напротив своего гомолога на другой хромосоме. Обе хромосомы затем удваиваются, но хроматиды остаются связанными одна с другой общей центромерой. В метафазе четыре соединенные хроматиды выстраиваются, образуя экваториальную пластинку, как если бы они были одной удвоенной хромосомой. В противоположность тому, что происходит при митозе, центромеры не делятся. В результате каждая дочерняя клетка получает пару хроматид, все еще связанных цетромерой. Во время второго деления хромосомы, уже индивидуальные, опять выстраиваются, образуя, как и в митозе, экваториальную пластинку, но их удвоения при этом делении не происходит. Затем центромеры делятся, и каждая дочерняя клетка получает одну хроматиду. Деление цитоплазмы. В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке - яйцеклетке. Конъюгация и кроссинговер. Во время конъюгации хроматиды гомологичных хромосом могут разрываться и затем соединяться в новом порядке, обмениваясь участками следующим образом: Этот обмен участками гомологичных хромосом называется кроссинговером (перекрестом). Как показано выше, кроссинговер ведет к возникновению новых комбинаций аллелей сцепленных генов. Так, если исходные хромосомы имели комбинации АВ и ab, то после кроссинговера они будут содержать Ab и aB. Этот механизм появления новых генных комбинаций дополняет эффект независимой сортировки хромосом, происходящей в ходе мейоза. Различие состоит в том, что кроссинговер разделяет гены одной и той же хромосомы, тогда как независимая сортировка разделяет только гены разных хромосом. ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ В принципе, и гаплоидные, и диплоидные клетки способны размножаться посредством митоза и давать начало взрослым особям. Однако у большинства животных, включая человека, только диплоидные клетки, возникшие в результате деления зиготы, формируют взрослую особь. У наземных растений такую функцию выполняют и гаплоидные, и диплоидные клетки. Поскольку при этом гаплоидное поколение чередуется с диплоидным, данное явление получило название чередования поколений. У мхов и мохообразных (Bryophyta) доминантным является гаплоидное поколение, хотя диплоидное тоже довольно хорошо развито и обычно паразитирует на гаплоидном. У высших наземных растений (Tracheophyta) диплоидное поколение доминирует, а гаплоидное очень редуцировано и представлено пыльцой и семяпочками. ПРИМИТИВНЫЕ КЛЕТКИ: ПРОКАРИОТЫ Все изложенное выше относится к клеткам растений, животных, простейших и одноклеточных водорослей, в совокупности называемых эукариотами. Эукариоты эволюционировали из более простой формы - прокариотов, которые в настоящее время представлены бактериями, включая архебактерий и цианобактерий (последних раньше называли синезелеными водорослями). В сравнении с клетками эукариотов прокариотические клетки мельче и имеют меньше клеточных органелл. У них есть клеточная мембрана, но отсутствует эндоплазматический ретикулум, а рибосомы свободно плавают в цитоплазме. Митохондрии отсутствуют, но окислительные ферменты обычно прикреплены к клеточной мембране, которая таким образом становится эквивалентом митохондрий. Прокариоты лишены также хлоропластов, а хлорофилл, если он имеется, присутствует в виде очень мелких гранул. Прокариоты не имеют окруженного мембраной ядра, хотя место расположения ДНК можно выявить по его оптической плотности. Эквивалентом хромосомы служит цепочка ДНК, обычно кольцевая, с намного меньшим количеством прикрепленных белков. Цепочка ДНК в одной точке прикрепляется к клеточной мембране. Митоз у прокариотов отсутствует. Его заменяет следующий процесс: ДНК удваивается, после чего клеточная мембрана начинает расти между соседними точками прикрепления двух копий молекулы ДНК, которые в результате этого постепенно расходятся. В конечном итоге клетка делится между точками прикрепления молекул ДНК, образуя две клетки, каждая со своей копией ДНК. ДИФФЕРЕНЦИРОВКА КЛЕТКИ Многоклеточные растения и животные эволюционировали из одноклеточных организмов, клетки которых после деления оставались вместе, образуя колонию. Изначально все клетки были идентичными, но дальнейшая эволюция породила дифференцировку. В первую очередь дифференцировались соматические клетки (т.е. клетки тела) и половые клетки. Далее дифференцировка усложнялась - возникало все больше различных клеточных типов. Онтогенез - индивидуальное развитие многоклеточного организма - повторяет в общих чертах этот эволюционный процесс (филогенез). Физиологически клетки дифференцируются отчасти за счет усиления той или иной особенности, общей для всех клеток. Например, в мышечных клетках усиливается сократительная функция, что может быть результатом совершенствования механизма, осуществляющего амебоидное или иного типа движение в менее специализированных клетках. Аналогичный пример - тонкостенные клетки корня с их отростками, т.н. корневыми волосками, которые служат для всасывания солей и воды; в той или иной степени эта функция присуща любым клеткам. Иногда специализация связана с приобретением новых структур и функций - примером может служить развитие локомоторного органа (жгутика) у сперматозоидов. Дифференцировка на клеточном или тканевом уровне изучена довольно подробно. Мы знаем, например, что иногда она протекает автономно, т.е. один тип клетки может превращаться в другой независимо от того, к какому типу клеток относятся соседние. Однако часто наблюдается т.н. эмбриональная индукция - явление, при котором один тип ткани стимулирует клетки другого типа дифференцироваться в заданном направлении. В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Тем не менее это не всегда так, в особенности у растительных клеток. Различия в структуре и функциях в конечном счете определяются тем, какие типы белков синтезируются в клетке. Поскольку синтезом белков управляют гены, а набор генов во всех клетках тела одинаков, дифференцировка должна зависеть от активации или инактивации тех или иных генов в различных типах клеток. Регуляция активности генов происходит на уровне транскрипции, т.е. образования информационной РНК с использованием ДНК в качестве матрицы. Только транскрибированные гены производят белки. Синтезируемые белки могут блокировать транскрипцию, но иногда и активируют ее. Кроме того, поскольку белки являются продуктами генов, одни гены могут контролировать транскрипцию других генов. В регуляции транскрипции участвуют также гормоны, в частности стероидные. Очень активные гены могут многократно дуплицироваться (удваиваться) для производства большего количества информационной РНК. Развитие злокачественных образований часто рассматривалось как особый случай клеточной дифференцировки. Однако появление злокачественных клеток является результатом изменения структуры ДНК (мутации), а не процессов транскрипции и трансляции в белок нормальной ДНК. См. также РАК. МЕТОДЫ ИЗУЧЕНИЯ КЛЕТКИ Световой микроскоп. В изучении клеточной формы и структуры первым инструментом был световой микроскоп. Его разрешающая способность ограничена размерами, сравнимыми с длиной световой волны (0,4-0,7 мкм для видимого света). Однако многие элементы клеточной структуры значительно меньше по размерам. Другая трудность состоит в том, что большинство клеточных компонентов прозрачны и коэффициент преломления у них почти такой же, как у воды. Для улучшения видимости часто используют красители, имеющие разное сродство к различным клеточным компонентам. Окрашивание применяют также для изучения химии клетки. Например, некоторые красители связываются преимущественно с нуклеиновыми кислотами и тем самым выявляют их локализацию в клетке. Небольшая часть красителей - их называют прижизненными - может быть использована для окраски живых клеток, но обычно клетки должны быть предварительно зафиксированы (с помощью веществ, коагулирующих белок) и только после этого могут быть окрашены. См. ГИСТОЛОГИЯ. Перед проведением исследования клетки или кусочки ткани обычно заливают в парафин или пластик и затем режут на очень тонкие срезы с помощью микротома. Такой метод широко используется в клинических лабораториях для выявления опухолевых клеток. Помимо обычной световой микроскопии разработаны и другие оптические методы изучения клетки: флуоресцентная микроскопия, фазово-контрастная микроскопия, спектроскопия и рентгеноструктурный анализ. Электронный микроскоп. Электронный микроскоп имеет разрешающую способность ок. 1-2 нм. Этого достаточно для изучения крупных белковых молекул. Обычно необходимо окрашивание и контрастирование объекта солями металлов или металлами. По этой причине, а также потому, что объекты исследуются в вакууме, с помощью электронного микроскопа можно изучать только убитые клетки. Авторадиография. Если добавить в среду радиоактивный изотоп, поглощаемый клетками в процессе метаболизма, то его внутриклеточную локализацию можно затем выявить с помощью авторадиографии. При использовании этого метода тонкие срезы клеток помещают на пленку. Пленка темнеет под теми местами, где находятся радиоактивные изотопы. Центрифугирование. Для биохимического изучения клеточных компонентов клетки необходимо разрушить - механически, химически или ультразвуком. Высвобожденные компоненты оказываются в жидкости во взвешенном состоянии и могут быть выделены и очищены с помощью центрифугирования (чаще всего - в градиенте плотности). Обычно такие очищенные компоненты сохраняют высокую биохимическую активность. Клеточные культуры. Некоторые ткани удается разделить на отдельные клетки так, что клетки при этом остаются живыми и часто способны к размножению. Этот факт окончательно подтверждает представление о клетке как единице живого. Губку, примитивный многоклеточный организм, можно разделить на клетки путем протирания сквозь сито. Через некоторое время эти клетки вновь соединяются и образуют губку. Эмбриональные ткани животных можно заставить диссоциировать с помощью ферментов или другими способами, ослабляющими связи между клетками. Американский эмбриолог Р.Гаррисон (1879-1959) первым показал, что эмбриональные и даже некоторые зрелые клетки могут расти и размножаться вне тела в подходящей среде. Эта техника, называемая культивированием клеток, была доведена до совершенства французским биологом А.Каррелем (1873-1959). Растительные клетки тоже можно выращивать в культуре, однако по сравнению с животными клетками они образуют большие скопления и прочнее прикрепляются друг к другу, поэтому в процессе роста культуры образуются ткани, а не отдельные клетки. В клеточной культуре из отдельной клетки можно вырастить целое взрослое растение, например морковь. Микрохирургия. С помощью микроманипулятора отдельные части клетки можно удалять, добавлять или каким-то образом видоизменять. Крупную клетку амебы удается разделить на три основных компонента - клеточную мембрану, цитоплазму и ядро, а затем эти компоненты можно вновь собрать и получить живую клетку. Таким путем могут быть получены искусственные клетки, состоящие из компонентов разных видов амеб. Если принять во внимание, что некоторые клеточные компоненты представляется возможным синтезировать искусственно, то опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию в лабораторных условиях новых форм жизни. Поскольку каждый организм развивается из одной единственной клетки, метод получения искусственных клеток в принципе позволяет конструировать организмы заданного типа, если при этом использовать компоненты, несколько отличающиеся от тех, которые имеются у ныне существующих клеток. В действительности, однако, полного синтеза всех клеточных компонентов не требуется. Структура большинства, если не всех компонентов клетки, определяется нуклеиновыми кислотами. Таким образом, проблема создания новых организмов сводится к синтезу новых типов нуклеиновых кислот и замене ими природных нуклеиновых кислот в определенных клетках. Слияние клеток. Другой тип искусственных клеток может быть получен в результате слияния клеток одного или разных видов. Чтобы добиться слияния, клетки подвергают воздействию вирусных ферментов; при этом наружные поверхности двух клеток склеиваются вместе, а мембрана между ними разрушается, и образуется клетка, в которой два набора хромосом заключены в одном ядре. Можно слить клетки разных типов или на разных стадиях деления. Используя этот метод, удалось получить гибридные клетки мыши и цыпленка, человека и мыши, человека и жабы. Такие клетки являются гибридными лишь изначально, а после многочисленных клеточных делений теряют большинство хромосом либо одного, либо другого вида. Конечный продукт становится, например, по существу клеткой мыши, где человеческие гены отсутствуют или имеются лишь в незначительном количестве. Особый интерес представляет слияние нормальных и злокачественных клеток. В некоторых случаях гибриды становятся злокачественными, в других нет, т.е. оба свойства могут проявляться и как доминантные, и как рецессивные. Этот результат не является неожиданным, так как злокачественность может вызываться различными факторами и имеет сложный механизм. ЛИТЕРАТУРА Хэм А., Кормак Д. Гистология, т. 1. М., 1982 Албертс Б., Брей Д., Льюс Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки, т. 1. М., 1994
Медицинская энциклопедия
I
Клетка (cytus)
основная структурно-функциональная единица, определяющая строение, жизнедеятельность, развитие и размножение животных и растительных организмов за исключением вирусов; элементарная живая система, способная к обмену веществ с окружающей средой и к самовоспроизведению. К. могут существовать как самостоятельные организмы (бактерии, одноклеточные водоросли, грибы, простейшие) или образуют ткани многоклеточных организмов. Наука о клетке — цитология — имеет ряд направлений, главными из которых являются цитоморфология, цитофизиология и цитопатология.
В зависимости от уровня клеточной организации различают два типа К.: прокариоты, или доядерные, и эукариоты, или ядерные. Прокариотические К. типичны для синезеленых водорослей и бактерий, из эукариотических клеток состоят все другие растительные и животные организмы.
Основными структурами эукариотической К. являются ядро, погруженное в цитоплазму, мембранная система, органоиды, а также специализированные структуры (рис. 1).
Ядро К. состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек и ядерной оболочки. Как правило, в К. имеется лишь одно ядро, но существуют и дву- и многоядерные клетки.
Кариоплазма содержит всю хромосомную ДНК клетки, которая в ассоциации с основными белками — гистонами — образует нити хроматина (см. <<Нуклеиновые кислоты>>) — нуклеогистоны. В этих нитях гистоны формируют дискообразные комплексы, вокруг которых обвиваются суперспирали ДНК. В результате возникают повторяющиеся структуры типа бус — нуклеосомы; последние, в свою очередь, складываются в виде спирали, благодаря чему достигается чрезвычайно компактная упаковка гигантских молекул ДНК, длина которой в каждой хромосоме в среднем равна 5 см. В зависимости от уровня конденсации ДНК различают эухроматин, т.е. зоны полной деконденсации, и гетерохроматин, где упаковка нуклеосом настолько плотна, что их комплексы видны в световой микроскоп как гранулы различных размеров (см. <<Хромосомы>>). В кариоплазме между нитями хроматина содержатся кислые (негистоновые) <<Белки>>, многие из которых участвуют в регуляции матричной деятельности участков ДНК (генов), гранулы рибонуклеопротеинов (РНП), различные ферменты и др. Кроме того, здесь выявляется система белковых нитей диаметром 2 нм, которые объединяются в фибриллы высших порядков диаметром до 20—30 нм, формируя структурный матрикс ядра. Под оболочкой ядра матрикс сгущается в плотную пластинку, с которой связаны участки хромосом и поровые комплексы оболочки ядра. Вдоль хромосом друг за другом располагаются участки, в которых осуществляется самовоспроизведение (репликация) молекул ДНК; эти участки называют репликонами.
В ядре находятся ядрышки, содержащие РНК; размеры ядрышек (1—5 мкм) могут варьировать в зависимости от состояния клетки.
Ядро окружено ядерной оболочкой, состоящей из внутренней и наружной мембран; пространство между ними называется перинуклеарным. Ядерная оболочка активно участвует в обмене веществ между ядром и цитоплазмой.
В цитоплазме различают гиалоплазму, мембранную систему, органоиды и разнообразные включения. Гиалоплазма (цитозоль, матрикс цитоплазмы) — сложная биоколлоидная система, которая объединяет все структуры К. и служит средой для их химического взаимодействия. Важную роль в этих процессах играют растворенные в цитозоле ферменты и АТФ. Кроме того, гиалоплазма содержит субмикроскопическую трехмерную сеть белковых волоконец трех типов: микрофиламенты (актиновые филаменты) диаметром 4—7 нм, построенные из сократимых белков, промежуточные филаменты (микрофибриллы) диаметром около 10 нм и микротрубочки — неветвящиеся полые цилиндры диаметром около 25 нм. Ряд вспомогательных белков связывает эти волоконца в каркас К. — цитоскелет; по периферии К. сгущение филамент формирует терминальную сеть. Изменения в цитоскелете влияют на вязкость цитоплазмы; локальные изменения вязкости вместе с сокращениями микрофиламентов приводят к движению К. Цитоскелет участвует также во внутриклеточном транспорте веществ и, возможно, в пространственной организации ферментных систем клетки.
Покрывающая клетку оболочка (плазматическая мембрана, плазмолемма) представляет собой комплекс липидных и белковых молекул. Первые образуют непрерывный двойной слой толщиной 6—10 нм (липидный бислой), в который погружены молекулы структурных, транспортных, рецепторных и других белков (рис. 2); липидный бислой определяет структурные особенности мембраны, а белки — большинство ее функций (см. <<Мембраны биологические>>). На внешней поверхности К. выступают цепи углеводов, соединенных с белками (гликопротеины) или с липидами (гликолипиды) плазмолеммы; эта внешняя зона толщиной 3—4 нм называется гликокаликс.
Специализированные участки плазматических мембран соприкасающихся К. образуют межклеточные контакты различного строения. На свободной поверхности ряда типов К. имеются микроворсинки, реснички, жгутики и др.
Подобно цитоскелету, плазматическая мембрана — динамичная структура, регулирующая взаимодействие между К. и ее окружением, включая другие К. При прохождении частиц и макромолекул внутрь К. (эндоцитоз) или при выведении их из К. (экзоцитоз) от плазмолеммы непрерывно отрываются одни участки и в нее встраиваются другие (круговорот мембранных компонентов К.). Процесс эндоцитоза разделяют на фагоцитоз (захват корпускулярных частиц) и пиноцитоз (захват коллоидов). Участок мембраны, отрывающийся в цитоплазму вместе с захваченным материалом, образует фагосому; в дальнейшем переваривании содержимого фагосомы участвуют ферменты лизосом. Захват частиц и макромолекул на поверхности К. обеспечивается специальными рецепторными белками. После этого рецепторы собираются в маленьком участке мембраны, под которым скапливается белок клатрин, формирующий здесь кайму. Погружаясь в К., такой участок образует окаймленную ямку, где концентрируются однородные, соответствующие рецептору макромолекулы, поглощаемые почти без внеклеточной жидкости (рецепторный эндоцитоз).
С плазматической мембраной сходны по строению внутренние мембраны К. — цитомембраны. Они разделяют внутреннее пространство К. высших организмов на отсеки — компартменты, которые организуют процессы обмена и обеспечивают возможность одновременного течения в одной К. многих химических реакций, подчас несовместимых друг с другом. Эти отсеки называют мембранными органоидами.
Органоиды (органеллы) цитоплазмы представляют собой постоянные структуры К., выполняющие определенные функции. К ним относятся эндоплазматический ретикулум, комплекс Гольджи, митохондрии, рибосомы и др.
Эндоплазматический ретикулум (эндоплазматическая сеть) представляет собой систему цистерн, канальцев и вакуолей, ограниченных цитомембраной. Различают гранулярный (шероховатый) и агранулярный (гладкий) эндоплазматический ретикулум; в первом преобладают плоские мешочки — цистерны, во втором — канальцы. Мембраны шероховатого ретикулума со стороны гиалоплазмы покрыты рибосомами. Степень развития этого органоида зависит от уровня метаболической активности и дифференцировки К.: он сильнее развит в клетках, активно синтезирующих белки.
Комплекс Гольджи — система уплощенных цистерн и пузырьков, окруженных мембраной; обычно находится неподалеку от ядра (рис. 3). В секретирующих К. этот органоид располагается на обращенной к внешней среде стороне ядра. От структур комплекса Гольджи отделяются пузырьки, которые, сливаясь, формируют секреторные гранулы.
Митохондрии окружены двойной оболочкой, состоящей из наружной и внутренней мембран; их размер 0,2—2,0 мкм, т.е. они видны в световой микроскоп. Внутренняя мембрана образует складки (кристы), вдающиеся в заполняющий внутреннюю камеру митохондрии матрикс (рис. 4); последний содержит кольцевые молекулы ДНК и митохондриальные рибосомы. В растительных К. этим органоидам соответствуют пластиды, осуществляющие фотосинтез. Главная функция митохондрии — участие в энергетическом обмене.
Лизосомы — окруженные одинарной мембраной тельца размером 0,2—0,4 мкм. В них находятся ферменты (гидролазы), которые осуществляют расщепление макромолекул и частиц как захваченных К. извне, так и завершивших цикл своего существования в К. Первичные лизосомы развиваются в комплексе Гольджи. Сливаясь с фагосомами, они образуют вторичные лизосомы, в которых происходит переваривание и усвоение захваченных веществ. Часть лизосом (аутолизосомы, цитолизосомы) переваривают отмирающие структуры самой К. Лизосомы с остатками непереваренных веществ называют телолизосомами (остаточные тельца).
Рибосомы — немембранные органоиды, содержащиеся во всех живых К., это универсальный аппарат синтеза белковых молекул. Они построены из белков и РНК; в функционирующем состоянии слагаются из большой и малой субъединиц и имеют размеры 25?20?20 нм.
Микротельца — общее название окруженных мембраной пузырьков диаметром 0,1—1,5 мкм. В их сердцевине находятся ферменты, катализирующие различные окислительные реакции. Например, ферменты пероксисом катализируют образование и разрушение Н2О2, что используется в ряде метаболических циклов.
Клеточный центр (центросома; рис. 5) состоит из пары центриолей (диплосома), окруженных тонковолокнистой зоной (центросфера). Каждая центриоль имеет форму цилиндра размером около 0,3—0,5?1,5 мкм. Этот органоид — центр организации микротрубочек цитоплазмы; он связан с развитием ресничек и жгутиков, образованием веретена деления и в целом с координацией движений клетки.
В некоторых К. (мышечных, нервных), помимо названных общеклеточных органоидов, имеются специальные органоиды (миофибриллы, синаптические пузырьки), связанные с выполнением К. ее специфических функций.
Цитоплазма может содержать включения — относительно непостоянные компоненты, образующиеся и исчезающие в ходе клеточного метаболизма. Они видны в световой микроскоп как плотные (гранулы) или жидкие (вакуоли) глыбки и капли. Различают трофические (белки, жиры, гликоген), секреторные, экскреторные и пигментные включения.
Все разнообразие К. животного организма возникает путем их развития из одной оплодотворенной яйцеклетки В ходе разделения функций (специализации) К. приобретают одни и утрачивают другие структуры. В результате процесса дифференцировки у человека образуется около 1013 клеток, которые принято объединять в 4 тканевых типа: эпителиальные, соединительнотканные, мышечные и нервные. Размеры К. колеблются от 4—6 мкм (малые лимфоциты человека) до нескольких сантиметров (яйцеклетки птиц); протяженность отростков нервных К. достигает 1,5 м.
Биосинтетические процессы в клетке. Генетическая информация молекул ДНК реализуется путем синтеза на матрице расплетенных нитей ДНК молекул РНК. Этот процесс называют транскрипцией. По мере образования нити РНК соединяются с белками в рибонуклеопротеиновые комплексы (РНК). В транскрипции участвует очень малая часть клеточной ДНК эухроматина. Первоначально образуются длинные молекулы так называемой гетерогенной ядерной РНК; в ходе созревания (процессинга) из нее, как правило, вырезаются и удаляются значительные участки (интроны). Зрелую РНК, которая служит матрицей для синтеза белков в цитоплазме, называют информационной РНК (иРНК). Кроме нее на матрицах особых генов синтезируются РНК транспортные (тРНК) и рибосомные (рРНК). Выходя в цитоплазму, молекулы тРНК соединяются в цитозоле с аминокислотами, причем каждому виду тРНК соответствует своя аминокислота, а комплексы рРНК с белками формируют малые и большие субъединицы рибосом.
Синтез белка на матрице иРНК (трансляция) протекает в цитоплазме (см. <<Белки>>). Белки, идущие в основном на нужды самой К., синтезируются на свободных рибосомах цитозоля; при синтезе мембранных или секреторных (подлежащих выделению) белков рибосомы прикрепляются к мембранам эндоплазматического ретикулума, составляя их гранулярный компонент. Липиды образуются на мембранах агранулярного ретикулума. Синтезированные вещества поступают в полости ретикулума и транспортируются в комплекс Гольджи; по мере продвижения они созревают и в конечном счете формируют секреторные пузырьки, направляющиеся к плазматической мембране. Перенос веществ между органоидами К. осуществляют окруженные мембраной транспортные пузырьки.
Процессы биосинтеза идут с поглощением энергии, основным поставщиком которой служат митохондрии. Здесь энергия, высвобождающаяся в ходе окислительных реакций, улавливается и накапливается в виде молекул АТФ; по мере надобности эти молекулы, расщепляясь, освобождают необходимую энергию. Некоторую роль в обмене энергии играет также АТФ цитозоля.
Таким образом, информация, поступающая из ядра, определяет (детерминирует) синтез макромолекул в цитоплазме. Однако часть проектов биосинтеза поступает в ядро, осуществляя регуляцию по типу обратной связи или непосредственно, как, например, гистоны, включаясь в состав хромосом. Влияние микроокружения на жизнедеятельность и дифференцировку К. также передается через цитоплазму.
Ядро и цитоплазма составляют неразрывное целое. Каждый из этих компонентов в отдельности может жить лишь ограниченное время и неспособен к самовоспроизведению, поэтому любое проявление жизнедеятельности К. — результат взаимодействия ее взаимосвязанных компонентов.
Биосинтетические процессы идут в К. непрерывно, пока в ней сохраняется оформленное ядро (период интерфазы) и практически прекращаются во время деления К. (период митоза). Период времени от возникновения К. в результате деления материнской К. до ее собственного деления или гибели называют клеточным циклом. Последовательные периоды цикла обозначают символами G1, S, G2 и М.
В G1 (пресинтетический период) синтезируются и накапливаются вещества, необходимые для репликации ДНК. В позднем G1-периоде наступает момент (точка рестрикции, R-точка), когда К. может выйти из цикла и выполнять свои специфические функции, не связанные с делением. Такие «покоящиеся» К. называют клетками, находящимися в периоде G0 цикла. В этом состоянии К. могут пребывать неопределенно долго; при этом одни К. (например, нервные) утрачивают способность размножаться, другие (например, гепатоциты) ее сохраняют и после повреждения ткани возвращаются в цикл. Длительность цикла определяется в основном длиной периода G1. Период G1 заканчивается удвоением центриолей клеточного центра. Для S-периода характерно удвоение молекул ДНК в ядре К. В силу неодновременности репликации по длине ДНК этот период длится 6—10 ч. Период G2 продолжается 2—5 ч; в это время К. готовится к митозу. В митозе (период М) происходят сложные преобразования ядра К., обеспечивающие преемственность хромосом в ряду клеточных поколений и появление генетически равнозначных дочерних клеток. В периоде М различают 4 фазы (рис. 6); его длительность 1—2 ч.
Профаза начинается е расхождения пар центриолей к полюсам К.; между ними из микротрубочек формируется веретено деления. Сама К. округляется, в ее ядре конденсируются и становятся видимыми в световой микроскоп двойные нити хромосом. Ядрышки и оболочка ядра разрушаются.
В метафазе хромосомы располагаются в экваториальной плоскости К. в виде метафазной пластинки. Каждая хромосома слагается из двух продольных нитей (хроматид), соединенных центромерой; последние прикреплены к нитям веретена деления специальными структурами — кинетохорами. Весь этот механизм, обеспечивающий точное распределение материала хромосом между дочерними клетками, называется митотическим аппаратом.
В анафазе хроматиды расходятся к разным полюсам. К. вытягивается, принимает удлиненную форму. С момента разделения хроматиды получают махание дочерних хромосом; в каждое из дочерних ядер попадает по одной хроматиде каждой хромосомы.
В телофазе фрагменты разрушенной ядерной мембраны связываются с дочерними хромосомами; по мере их деконденсации эти фрагменты сливаются в общую оболочку ядра. Происходит реконструкция дочерних ядер, синтез новых ядрышек, разрушение митотического аппарата. В поздней анафазе или в телофазе между дочерними ядрами появляется борозда деления, или поперечная перегородка, и тело К. разделяется на две дочерние К. (цитокинез цитотомия). При нарушении цитотомии митоз может завершиться образованием дву- или многоядерных клеток.
Особой формой деления К. является мейоз, при котором двум последовательным делениям К. предшествует лишь однократная репликация ДНК. В результате образуются половые клетки, содержащие вдвое меньше ДНК и хромосом, чем остальные (соматические) К. организма. При слиянии половых К. (оплодотворении) характерное для К. данного организма число хромосом восстанавливается (см. <<Размножение>>, <<Зародыш>>). Увеличение клеточной массы может протекать и без разделения К. путем последовательною, иногда многократного, удвоения молекул ДНК и, соответственно, числа хромосом в ядре. Эти процессы называют эндорепродукцией, а образующиеся в результате их К. — полиплоидными. В некоторых случаях полиплоидные или диплоидные К. (чаще их ядра) разделяются без нарушения целостности ядер и ядрышек путем прямого деления — амитоза. Различные формы амитоза нередко встречаются при патологических процессах (воспаление, злокачественный рост), а также в ходе регенерации и старения клетки.
Старение К. сопровождается нарушениями биосинтетических процессов, включая транскрипцию и трансляцию генетической информации, а также репликацию и репарацию ДНК. Изменяются физико-химические свойства белков хроматина ядер К., увеличивается прочность связывания гистонов с ДНК. Накопление дефектных макромолекул ведет к изменениям структуры цитозоля и органоидов и к нарушению функции К. Разные К. стареют по-разному. В нервных К., в элементах миокарда и скелетных мышц накапливаются так называемые пигменты износа, например липофусцин. Темп деления короткоживущих К. замедляется. Есть данные, что потомки каждой К. проходят определенное, генетически детерминированное число клеточных циклов. Для фибробластов (см. <<Соединительная ткань>>) это число равно 20—50. Наряду с деструктивными процессами в стареющих К. наблюдаются также приспособительные процессы, направленные на восстановление функций К. По мере нарастания деструкции и угасания восстановления наступает естественная смерть клетки.
Деструкция и смерть К. могут наступить также вследствие действия различных повреждающих факторов. Эти процессы изучает цитопатология. На многие виды повреждений К. может отвечать однотипной реакцией в виде комплексных изменений цитоплазмы (изменения вязкости, способности воспринимать красители), ядра (конденсация хроматина, скопление его глыбок по периферии ядра — маргинация хроматина) и ядрышек (изменение числа и размеров, исчезновение). Число повреждающих факторов, как правило, превышает набор возможных морфологических изменений К., поэтому определить (диагностировать) причину повреждения удается лишь на основании анализа комплекса изменений совокупности (популяции) К. Но иногда в реакции К. выявляются и специфические черты. Так, повреждение отдельных хромосом половых К. может лежать в основе наследственных болезней (<<Наследственные болезни>>). Структурные изменения К. сопровождаются нарушениями их жизнедеятельности. В зависимости от характера, интенсивности и продолжительности действия повреждающего агента патологические изменения К. могут быть обратимыми (см. Дистрофии клеток и тканей (<<Дистрофия клеток и тканей>>)) или необратимыми (см. <<Некроз>>). Выделение из ядра жидкости со сжатием хроматина в крупные глыбки или в единую массу и с исчезновением ядрышка называют пикнозом. К тяжелым необратимым изменениям ядра, сопряженным с гибелью К., относятся кариорексис (распад на отдельные глыбки) и кариолизис (выход содержимого ядра в цитоплазму). Изменения ядра часто сочетаются с расширением (отеком) перинуклеарного пространства. В цитоплазме наблюдаются признаки нарушения циркуляции внутриклеточной жидкости, изменения проницаемости мембранных структур К., гипертрофические и атрофические процессы и др. К частым морфологическим проявлениям патологии К. относятся набухание и разрушение митохондрий, распад одномембранных органоидов на мелкие пузырьки, разрушение элементов цитоскелета. Во всех этих процессах важную роль играют ферменты лизосом; в тяжелых случаях их мембрана разрывается, и высвободившиеся ферменты обусловливают разрушение (лизис) клетки.
Среди разнообразных форм клеточной патологии особо выделяют вирусную цитопатологию. Проникая в К., вирусы вносят в нее чужеродную генетическую информацию, резко изменяющую ход биосинтетических процессов. В частности, вирусные иРНК связываются со многими рибосомами К., формируя вирусспецифические полисомы, на которых синтезируются белки не клетки, а вируса. Репликация вирусных нуклеиновых кислот и сборка вирусных частиц протекают в зависимости от свойств вируса в цитоплазме или в ядре К. Специфическими морфологическими признаками вирусной инфекции служат вирусные включения, видимые в световой микроскоп. Форма, расположение, структура и химические особенности включений характерны для каждого семейства вирусов, так что диагноз нередко можно поставить на основании изучения отдельной К. Ряд вирусов (кори, оспы) вызывает слияние К. с образованием многоядерных симпластов. Комплекс изменений, предшествующих гибели К. при вирусной инфекции, называют цитопатическим эффектом; вирусы, вызывающие гибель зараженных ими К., называют цитопатогенными. Изменения зараженных вирусами К. лежат в основе патогенеза ряда вирусных заболеваний. Специфичность морфологических изменений К. используют в лабораторной диагностике вирусных инфекций для индикации вируса в клеточных культурах и выявления антител в сыворотке больных или перенесших заболевание
Вирусы, имеющие липопротеидную оболочку, выходят из К. путем почкования по типу экзоцитоза; при этом К. погибает спустя некоторое время. Другие вирусы освобождаются путем «взрыва», вызывая быстрое разрушение К. Вирусные инфекции, ведущие К. к гибели, называют цитолитическими (цитоцидными).
Некоторые семейства вирусов способны, не разрушая К., объединяться (интегрировать) с ее хромосомами. При такой интегративной форме инфекции вирусный геном реплицируется и функционирует как составная часть генома К. Геном или часть генома вируса в составе хромосом К. называют провирусом. Включаться в геном К. могут ДНК-содержащие онкогенные вирусы, аденовирусы, вирусы гепатита В и герпеса. РНК-содержащие ретровирусы имеют в вирионе особый фермент — обратную транскриптазу, которая обеспечивает синтез ДНК на матрице вирусной РНК. Такой ДНК-транскрипт играет роль провируса.
Опухолевая трансформация К. при ее заражении онковирусами обусловлена онкогенами — участками клеточного генома. захваченными онковирусом в ходе его образования в К. Вирус транспортирует онкоген в определенное место генома К., результатом чего является нарушение регуляции деления К. (см. <<Опухоли>>).
Библиогр.: Албертс Б. и др. Молекулярная биология клетки, пер. с англ., т. 1—5, М., 1986; Дин Р. Процессы распада в клетке, пер. с англ., М, 1981; Епифанова О.И., Терских В.В. и Полуновский В.А. Покоящиеся клетки: Свойства и функции в организме, М., 1983; Збарский И.Б. Организация клеточного ядра, М., 1988; Либерман Е.А. Живая клетка, М., 1982; Мецлер Дэвид Э. Биохимия: Химические реакции в живой клетке, пер. с англ., т. 1—3, М., 1980; Серов В.В. и Пауков В.С. Ультраструктурная патология, М., 1975; Ченцов Ю.С. Общая цитология, М., 1984.
Рис. 3. Комплекс Гольджи: 1 — цистерны; 2 — везикулы (пузырьки); 3 — крупная вакуоль.
Рис. 2. Схема строения плазматической мембраны: 1 — фосфолипиды; 2 — холестерин; 3 — интегральный белок; 4 — олигосахаридная боковая цепь.
Рис. 4. Схема строения митохондрии: 1 — внутренняя мембрана; 2 — межмембранное пространство; 3 — наружная мембрана; 4 — матрикс; 5 — кристы.
Рис. 1. Схема строения эукариотической клетки: 1 — ядро; 2 — ядрышко; 3 — поры ядерной оболочки; 4 — митохондрия; 5 — эндоцитозное впячивание; 6 — лизосома; 7 — агранулярный эндоплазматический ретикулум; 8 — гранулярный эндоплазматический ретикулум с полисомами; 9 — рибосомы; 10 — комплекс Гольджи; 11 — плазматическая мембрана. Стрелки указывают направление потоков при эндо- и экзоцитозе.
Рис. 6. Схема митотического деления клетки: а — начало профазы; б — конец профазы; в — метафаза; г — анафаза; д — телофаза; е — завершение митоза. 1 — ядро; 2 — ядрышко; 3 — ядерная оболочка; 4 — неспирализованные хромосомы; 5 — пара центртриолей; 6 — нити веретена деления; 7 — родительские хромосомы разных типов; 8 — центромеры хромосом; 9 — дочерние хромосомы; 10 — поперечная мембранная перегородка между дочерними клетками.
Рис. 5. Электронограмма клеточного центра (две центриоли в конце G1-периода клеточного цикла): 1 — центриоли в поперечном сечении; 2 — центриоли в продольном сечении.
II
Клетка (-и) (cellula,-ae, LNH)
элементарная живая система, состоящая из двух основных частей — ядра и цитоплазмы, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений.
А-клетка — см. <<Инсулоцит>> ацидофильный.
В-клетка — см. <<Инсулоцит>> базофильный.
D-клетка — см. <<Инсулоцит>> дефинитивный.
К-клетка (син. тироцит парафолликулярный) — К. ультимобранхиальных телец, вырабатывающая кальцитонин.
LE-клетки — см. Клетки красной волчанки.
?-клетка панкреатических островков (с. alpha, LNH) — см. <<Инсулоцит>> ацидофильный.
?-клетка —
1) гипофиза — см. Аденоцит В-базофильный (<<Аденоциты>>);
2) панкреатических островков (с. beta. LNH) — см. <<Инсулоцит>> базофильный.
?-клетка —
1) гипофиза — см. Аденоцит D-базофильный (<<Аденоциты>>);
2) панкреатических островков (с. delta, LNH) — см. <<Инсулоцит>> дефинитивный.
Клетки аберрантные исходные — малодифференцированные К., отклоняющиеся в своем развитии от нормальной дифференцировки.
Клетка адвентициальная (с. adventitialis) — см. <<Перицит>>.
Клетка адреналогенная (с. adrenalogena, <<Адреналин>> + греч. -genes порождающий) — хромаффинная К., продуцирующая адреналин или норадреналин.
Клетки акантолитические (с. acantholyticae, син. Тцанка клетки) — округлые К. шиповатого слоя эпидермиса и эпителия слизистых оболочек, содержащие крупное ядро и ободок базофильной цитоплазмы; наблюдаются при акантолизе.
Клетки альвеолярные большие (alveolocyti magni) — см. <<Альвеолоциты>> большие.
Клетки альвеолярные респираторные (alveolocyti respiratorii) — см. <<Альвеолоциты>> дыхательные.
Клетки альвеолярные секреторные (alveolocyti secretorii) — см. <<Альвеолоциты>> большие.
Клетки Аничкова — см. <<Аничкова миоциты>>.
Клетка антителообразующая — см. Клетка плазматическая.
Клетка антителопродуцирующая — см. Клетка плазматическая.
Клетка апикально-зернистая — см. <<Энтероцит с ацидофильными гранулами>>.
Клетки аргентаффинные (с. argentaffinae) — см. <<Аргентаффиноциты кишечные>>.
Клетки аргентофильные (с. argentophilicae) — см. <<Аргентаффиноциты кишечные>>.
Клетки Арманни — Эбштейна — см. <<Арманни — Эбштейна клетки>>.
Клетки Асканази — см. <<Асканази клетки>>.
Клетка астроглиальная (astrocytus) — см. <<Астроцит>>.
Клетка атрофичная (с. atrophica) — К. уменьшенная в размерах в связи с нарушением ее питания.
Клетка ацидофильная (с. acidophilica, син.: К. оксифильная, К. эозинофильная) — К., в цитоплазме которой содержатся гранулы, воспринимающие кислые красители.
Клетки ацинарные (с. acinares) — секреторные К. концевых отделов ацинозных желез.
Клетки ашоффские — см. <<Ашоффские клетки>>.
Клетка базальная (с. basalis) — см. <<Эпидермоцит базальный>>.
Клетки базально-зернистые (с. basogranulares) — см. <<Аргентаффиноциты кишечные>>.
Клетка базофильная (с. basophilica) —
1) К., в цитоплазме которой содержатся гранулы, воспринимающие основные красители;
2) К. с повышенным содержанием рибонуклеопротеидов в цитоплазме.
Клетка баллонная — К., подвергшаяся баллонной дистрофии, содержащая очень крупную вакуоль, оттесняющую ядро к периферии клетки.
Клетка береговая — см. <<Ретикулоэндотелиоцит>> звездчатый.
Клетки Березовского — Штернберга — см. <<Березовского — Штернберга клетки>>.
Клетки беременности (с. graviditatis; син. аденоциты беременности) — крупные К. с ацидофильной зернистостью, образующиеся в передней доле гипофиза при беременности.
Клетка бескаёмчатая (enterocytus alimbatus) — см. Энтероцит бескаемчатый (<<Энтероцит бескаёмчатый>>).
Клетка Беца — см. Нейрон гигантопирамидальный (<<Нейрон>>).
Клетки бластные (с. blasticae) — К. крови на стадиях созревания и дифференцировки от стволовой К. до эритробласта, мегакариобласта, миелобласта, монобласта, плазмобласта и лимфобласта включительно.
Клетка блуждающая (с. migrans; син. амебоцит) — К. многоклеточного организма, способная к амебоидному движению.
Клетка блуждающая гематогенная (с. migrans haematogena) — блуждающая К., возникающая из клетки крови (лимфоцита, моноцита).
Клетка блуждающая гистиогенная (с. migrans histiogena) — блуждающая К., возникающая из гистиоцита.
Клетка блуждающая мезенхимная (с. migrans mesenchymalis) — блуждающая К. мезенхимного происхождения.
Клетка блуждающая в покое — см. <<Макрофаг>> оседлый.
Клетка бокаловидная (с. caliciformis) — одноклеточная слизистая железа эпителия кишечника или дыхательных путей, в цитоплазме которой накапливается слизь, оттесняющая ядро.
Клетка Бровича — Купфера — см. <<Ретикулоэндотелиоцит>> звездчатый.
Клетки веретенообразные Реклингхаузена — см. <<Реклингхаузена веретенообразные клетки>>.
Клетки Вирхова — см. Клетки лепрозные.
Клетки вкусовые (с. gustatoriae, LNH) — эпителиальные рецепторные К. вкусовой луковицы, снабженные на апикальном конце воспринимающими микроворсинками и имеющие контакты с разветвлениями нервных волокон.
Клетки волосковые (с. sensoriepitheliales pilosae, LNH; син. Корти клетки) — эпителиальные рецепторные К. спирального органа, пятен маточки и мешочка, ампульных гребешков, воспринимающие раздражение посредством слуховых волосков.
Клетки волосковые внутренние (с. pilosae internae, LNH) — волосковые К. кувшинообразной формы, расположенные в один ряд во внутренней части спирального органа.
Клетки волосковые наружные (с. pilosae externae, LNH) — волосковые К. цилиндрической формы, расположенные в 3—4 ряда в наружной части спирального органа.
Клетки ганглиозные (с. ganglionares; син. К. ганглионарные) — общее название некоторых видов крупных нейронов (гигантопирамидальный нейрон коры полушарий большого мозга, зрительно-ганглиозный нейрон сетчатки, грушевидный нейрон коры мозжечка и др.).
Клетки ганглионарные (с. ganglionares) — см. Клетки ганглиозные (<<Клетка>>).
Клетка гаплоидная (с. haploidea) — К. с гаплоидным набором хромосом.
Клетки гаргоиловые (с. gargoylicae) — К. с «пенистой» цитоплазмой, появляющиеся в различных органах при гаргоилизме.
Клетки Гензена — см. Клетки пограничные наружные (<<Клетка>>).
Клетка гигантская (с. gigantea) — крупная К. с многочисленными ядрами или одним крупным ядром; К. г. появляются в органах и тканях при некоторых патологических процессах, чаще воспалительных.
Клетка гигантская аденовирусная (с. gigantea adenoviralis) — К. гигантская округлой формы с большим гиперхромным ядром, образующаяся в зонах внедрения аденовируса (легкие, конъюнктива) и обнаруживаемая в экссудате.
Клетка гигантская инородного тела (с. gigantea corporis alieni; син. К. инородного тела) — многоядерная гигантская К. с высокой ферментативной активностью, образующаяся из клеток соединительной ткани около инородного тела или труднорастворимых продуктов эндогенного происхождения; принимает участие в фагоцитозе.
Клетка гигантская коревая (с. gigantea morbillaris) — многоядерная гигантская К., обнаруживаемая при кори в легочных альвеолах.
Клетка гигантская костная (osteocytus giganteus) — см. <<Остеокласт>>.
Клетка гигантская миогенная (с. gigantea myogena) — крупный миосимпласт, образующийся в месте повреждения мышечного волокна в процессе его регенерации.
Клетка гигантская многоядерная (с. gigantea polynuclearis) — гигантская К. с многочисленными ядрами, образующимися при делении ядра без деления тела клетки.
Клетка гигантская одноядерная (с. gigantea mononuclearis) — гигантская К. с одним большим ядром.
Клетка гигантская печени (с. gigantsa hepatis) — крупный гепатоцит с одним или двумя большими ядрами; обычно наблюдаются при регенерации печеночной ткани.
Клетка гигантская цитомегалическая (с. gigantea cytomegalica) — одноядерная эпителиальная гигантская К. с ацидофильными включениями в ядре; обнаруживаются в протоках слюнных желез и в других органах при цитомегалии.
Клетка гигантская эндотелиальная (с. gigantea endothelialis) — крупная эндотелиальная К.; участвует в процессе регенерации внутренней оболочки сосудов и в фагоцитозе.
Клетка гигантская эпителиальная (с. gigantea epithelialis) — многоядерная гигантская К., образующаяся в шиповидном слое эпидермиса при ветряной оспе.
Клетки гилусные (с. hili ovarii; анат. hilus ворота) — интерстициоциты яичника, расположенные в области его ворот и продуцирующие в небольшом количестве андрогены.
Клетка глиальная (gliocytus) — см. <<Глиоцит>>.
Клетка глобоидная (с. globoidea; лат. globus шар + греч. -eides подобный) — К. шаровидной формы.
Клетка гломусная (с. glomeris) — хромаффиноцит, входящий в состав гломуса (каротидного, аортального и др.).
Клетки Гольджи — см. <<Гольджи клетки>>.
Клетка Гормагтига — см. Клетка юкставаскулярная.
Клетки Гоше — см. <<Гоше клетки>>.
Клетка гранулёзная (с. granulosa) — яичниковый фолликулоцит, входящий в состав зернистого слоя растущего фолликула.
Клетка гранулезолютейновая (granulosoluteocytus) — см. <<Лютеоцит зернистый>>.
Клетки Гюртле — см. <<Асканази клетки>>.
Клетки Дейтерса — см. Клетки фаланговые наружные.
Клетка децидуальная (с. decidualis) — крупная К. со светлой цитоплазмой, образующаяся в результате метаморфоза эндометрия при беременности.
Клетка диплоидная (с. diploidea) — К. с диплоидным набором хромосом.
Клетка добавочная (с. accessoria) — мукоцит слизистой оболочки желудка.
Клетка Догеля I типа — см. <<Нейрон>> длинноаксонный.
Клетка Догеля II типа — см. <<Нейрон>> равноотростчатый.
Клетка дренажная — разновидность олигодендроглиоцита, характеризующаяся округлой формой и наличием внутриклеточных полостей.
Клетка железистая (с. glandularis)— см. <<Гландулоцит>>.
Клетки жёлтые — см. <<Аргентаффиноциты кишечные>>.
Клетка жировая (с. adiposa) — см. <<Липоцит>>.
Клетка зимогенная (с. zymogena) — см. <<Панкреоцит экзокринный>>.
Клетки иммунокомпетентные — лимфоциты костномозгового и тимического происхождения, обеспечивающие развитие иммунного ответа.
Клетки иммунологически коммитированные — иммунокомпетентные К., распознающие антиген посредством антителоподобных рецепторов, находящихся на их цитоплазматической мембране.
Клетка инородного тела — см. Клетка гигантская инородного тела.
Клетка инсулярная (с. insularis) — см. <<Инсулоцит>>.
Клетка интерстициальная (с. interstitialis) — см. <<Интерстициоцит>>.
Клетка каёмчатая (с. limbata) — см. Эпителиоцит кишечный с исчерченной каемкой (<<Эпителиоцит кишечный с исчерченной каёмкой>>).
Клетка камбиальная (с. cambialis) — малодифференцированная К., интенсивно делящаяся и служащая источником образования специализированных клеток.
Клетки кастрации (с. castrationis) — крупные К., появляющиеся в аденогипофизе после кастрации, содержащие большие вакуоли и оксифильную зернистость.
Клетки Кащенко — Хофбауэра — см. Кащенко—Хофбауэра клетки (<<Кащенко — Хофбауэра клетки>>).
Клетки керазиновые — см. <<Гоше клетки>>.
Клетка кишечная (с. intestinalis) — см. <<Энтероцит>>.
Клетки Кларка — см. <<Кларка клетки>>.
Клетки Клаудиуса — см. Клетки поддерживающие наружные.
Клетки коллоидные (с. colloidales) — см. <<Лангендорффа клетки>>.
Клетка корзинчатая — см. <<Миоэпителиоцит>>.
Клетки Корти — см. Клетки волосковые.
Клетки кортикотропные (с. corticotropicae) — см. <<Кортикотропоциты>>.
Клетка костная (osteocytus) — см. <<Остеоцит>>.
Клетки крапивные — см. Клетки стрекательные.
Клетки красной волчанки (син.: LE-клетки, Харгрейвса клетки) — зрелые нейтрофильные гранулоциты, ядра которых оттеснены к периферии фагоцитированным ядерным веществом другой клетки; при окраске эозином имеют вид гомогенных шаров розового цвета; обнаруживаются в периферической крови больных системной красной волчанкой.
Клетки кроющие — см. <<Альвеолоциты>> дыхательные.
Клетка крылатая — см. <<Эпидермоцит шиповатый>>.
Клетка ксантомная (с. xanthomatica; син. К. пенистая) — макрофаг, переваривающий захваченные им распавшиеся ткани и содержащий в цитоплазме большое количество холестерина.
Клетки Кульчицкого — см. <<Аргентаффиноциты кишечные>>.
Клетка Купфера — см. <<Ретикулоэндотелиоцит>> звездчатый.
Клетки Лангендорффа — см. <<Лангендорффа клетки>>.
Клетка Лангерганса — см. <<Эпидермоцит белый отростчатый>>.
Клетки Лангханса — см. <<Лангханса клетки>>.
Клетка Лейдига — см. <<Гландулоцит яичка>>.
Клетка лейкозная (с. leucotica) — патологически измененная К. крови, являющаяся цитологическим субстратом определенного типа лейкоза.
Клетки лепрозные (с. leprosae; син. Вирхова клетки) — большие К. с «пенистой» цитоплазмой, развивающиеся из гистиоцитов; содержат палочки лепры, обнаруживаемые при окраске по, Цилю—Нельсену.
Клетка лимфоидная (с. lymphoidea) — К. лимфоидной ткани.
Клетка лютейновая — см. <<Лютеоцит>>.
Клетка Маршанова — см. <<Перицит>>.
Клетка Массона — см. <<Массона клетка>>.
Клетка мезангиальная (mesangiocytus) — см. <<Мезангиоцит>>.
Клетка мезенхимная (mesenchymocytus; син. мезенхимоцит) — общее название К., образующих мезенхиму; имеют веретенообразную или звездчатую форму.
Клетка мезотелиальная (mesotheliocytus) — см. <<Мезотелиоцит>>.
Клетка Мёркеля — см. Клетка осязательная.
Клетки металлофильные (металлы + греч. phileo любить; син. металлоциты) — К. с выраженным свойством окрашиваться солями серебра, золота, железа и других металлов, например, ретикулярные К.
Клетка микроглиальная (с. microglialis) — см. <<Макрофаг>> глиальный.
Клетка миоэпителиальная (c. myoepithelialis) — см. <<Миоэпителиоцит>>.
Клетки митральные (с. mitrales) — нейроны обонятельных луковиц, дендриты которых образуют синапсы с обонятельными волокнами, а аксоны идут в составе обонятельного тракта в обонятельную долю коры полушарий большого мозга.
Клетка мононуклеарная (с. mononuclearis) — см. <<Мононуклеар>>.
Клетка монстрозная (с. monstruosa; лат. monstruosus необыкновенный, чудовищный) — крупная К. неправильной формы с большим атипичным ядром; встречаются в злокачественных опухолях, отличающихся клеточным полиморфизмом.
Клетка мукоидная (mucocytus) — см. <<Мукоцит>>.
Клетки мукосерозные (с. mucoserosae) — К. концевых отделов подъязычной железы, выделяющие белковый и слизистый секрет.
Клетка мышечная гладкая [myocytus glaber (leiomyocytus), LNH; син.: волокно мышечное гладкое, лейомиоцит, миоцит гладкий] — общее название К. веретенообразной формы с палочковидным ядром, содержащих миофиламенты и образующих гладкую мышечную ткань.
Клетки Мюллеровские — см. Глиоциты, поддерживающие волокно (<<Глиоцит>>).
Клетки невусные (с. naeviae) — К., составляющие основу пигментных невусов и меланом; развиваются из меланоцитов эпидермиса и из леммоцитов кожных нервов.
Клетка нейроглиальная (с. neuroglialis) — см. <<Глиоцит>>.
Клетка нейросенсорная обонятельная (с. neurosensoria olfactoria) — см. Клетка обонятельная.
Клетка нейроэпителиальная (с. neuroepithelialis) — общее название глиоцитов органов чувств, контактирующих с дендритами чувствительных нейронов и участвующих в восприятии раздражения.
Клетка нервная (neurocytus, neuronum) — см. <<Нейрон>>.
Клетки нехромаффинные (с. achromaffinae) — К. хеморецепторных нехромаффинных параганглиев.
Клетки Ниманна—Пика — см. Ниманна—Пика клетки (<<Ниманна — Пика клетки>>).
Клетка обкладочная — см. <<Гландулоцит париетальный>>.
Клетка обонятельная (с. olfactoria, LNH; син.: К. нейросенсорная обонятельная, Шультце клетка) — рецепторная К., воспринимающая изменения концентрации пахучих веществ в воздухе.
Клетка околоклубочковая — см. Клетка юкстагломерулярная.
Клетки окончатые Кахаля — см. <<Кахаля окончатые клетки>>.
Клетка оксифильная (с. oxyphilica) — см. Клетка ацидофильная.
Клетка олигодендроглиальная (с. oligodendroglialis) — см. <<Олигодендроглиоцит>>.
Клетка Ортеги — см. <<Макрофаг>> глиальный.
Клетка островковая (insulocytus) — см. <<Инсулоцит>>.
Клетка осязательная (с. tactus, LNH; син. Меркеля клетка) — эпителиальная К. осязательного мениска, с которой тесно контактируют концевые веточки чувствительных нервных волокон.
Клетка Панета — см. <<Энтероцит с ацидофильными гранулами>>.
Клетка панкреатическая (с. pancreatica) — см. <<Панкреоцит экзокринный>>.
Клетка Паппенгейма — см. <<Паппенгейма клетка>>.
Клетки параганглионарные (с. paraganglionares) — К. параганглиев симпатической и парасимпатической частей вегетативной нервной системы.
Клетка паратиреоидная (с. parathyroidea) — см. <<Паратироцит>>.
Клетка париетальная (с. parietalis) — см. <<Гландулоцит париетальный>>.
Клетки Педжета — см. <<Педжета клетки>>.
Клетка пенистая (с. spumosa) — см. Клетка ксантомная.
Клетка периваскулярная (с. perivascularis) — см. <<Перицит>>.
Клетка перстневидная (с. cricoidea) — К., в цитоплазме которой содержится большое количество слизи, оттесняющей ядро к периферии (в виде полулуния); встречаются в опухолях яичников.
Клетка печёночная (hepatocytus) — см. <<Гепатоцит>>.
Клетка пигментная (с. pigmentosa) — К., содержащая и цитоплазме пигментные включения.
Клетка пирамидная гигантская (с. pyramidalis gigantea) — см. Нейрон гигантопирамидальный (<<Нейрон>>).
Клетки Пирогова — Лангханса — см. <<Пирогова — Лангханса клетки>>.
Клетка пирроловая (устар.; с. pyrrolica) — см. <<Макрофаг>>.
Клетка плазматическая (plasmocytus; син.: К. антителообразующая, К. антителопродуцирующая, плазмоцит) — К. лимфоидной ткани, продуцирующая иммуноглобулины; содержит в цитоплазме большое число полирибосом и обладает развитой сетью эндоплазматических цистерн, заполненных новообразованными иммуноглобулинами.
Клетки плазматические Унны — см. <<Унны плазматические клетки>>.
Клетки пограничные внутренние (с. limitantes internae, LNH) — К. спирального органа, расположенные рядом с внутренними фаланговыми клетками и выполняющие опорную функцию.
Клетки пограничные наружные (с. limitantes externae, LNH; син. Гензена клетки) — К. спирального органа, расположенные рядом с наружными фаланговыми клетками и выполняющие опорную функцию.
Клетки поддерживающие (с. sustentantes, LNH) — глиальные К., расположенные между волосковыми К. в составе спирального органа, пятен маточки и мешочка, ампулярных гребешков и выполняющие опорную функцию.
Клетки поддерживающие внутренние (с. sustentantes internae, LNH) — поддерживающие К. спирального органа, расположенные рядом с внутренними пограничными клетками.
Клетки поддерживающие наружные (с. sustentantes externae, LNH; син. Клаудиуса клетки) — поддерживающие К. спирального органа, расположенные рядом с наружными пограничными клетками.
Клетка половая (с. sexualis) — К., специализированная для воспроизведения организма и являющаяся носителем наследственной информации.
Клетка половая первичная (с. sexualis primaria) — см. <<Гоноцит>>.
Клетка Пуркинье — см. <<Нейрон>> грушевидный.
Клетка пылевая (с. pulverea) — см. <<Кониофаг>>.
Клетка рагиокринная (устар.; с. rhagiocrinica) — см. <<Макрофаг>>.
Клетки Реншо — см. <<Реншо клетки>>.
Клетка ретикулоэндотелиальная (reticuloendotheliocytus, LNH) — см. <<Ретикулоэндотелиоцит>>.
Клетка ретикулярная (с. reticularis, LNH) — многоотростчатая К. ретикулярной ткани.
Клетки рецепторные (с. receptoriae) — К., воспринимающие действие специфических раздражителей (например, фотосенсорные К. сетчатки, волосковые К. спирального органа).
Клетки Рид — Штернберга — см. <<Березовского — Штернберга клетки>>.
Клетки роговичные (с. corneales; син. роговичные тельца) — плоские К. типа фибробластов, расположенные между соединительнотканными пластинками собственного вещества роговицы.
Клетки розеткообразующие — лимфоциты с антигенсвязывающими рецепторами, образующие с антигенами эритроцитов агглютинаты в форме розеток.
Клетка Руже — см. <<Перицит>>.
Клетка сальная (sebocytus) — см. <<Себоцит>>.
Клетки светочувствительные (с. photosensoriae) — см. Клетки фотосенсорные.
Клетка сенсорно-эпителиальная (с. sensoriepithelialis, LNH) — общее название эпителиальных рецепторных (волосковых и вкусовых) К.
Клетки сердечных пороков (c. vitiorum cordis) — макрофаги альвеолярных перегородок, поглотившие обломки эритроцитов с превращением гемоглобина в гемосидерин; К. с. п. скапливаются в просвете альвеол при застойных явлениях в легких и обусловливают ржавый цвет мокроты.
Клетка Сертоли — см. Сустентоцит (<<Сустентоциты>>).
Клетка синусоидная (с. sinusoidea) — см. <<Ретикулоэндотелиоцит>> звездчатый.
Клетка слёзная (lacrimocytus) — см. <<Лакримоцит>>.
Клетка слизистая (mucocytus) — см. <<Мукоцит>>.
Клетка соматическая (с. somatica) — общее название всех К. тела, за исключением половых К.
Клетка стволовая —
1) клетка кроветворной ткани, способная дифференцироваться в направлении любого ростка кроветворения, а также образовывать иммунокомпетентные К.;
2) см. <<Клетка-предшественник>>.
Клетки столбов внутренние (с. internae columnarum, LNH) — К. спирального органа, образующие внутреннюю стенку внутреннего туннеля.
Клетки столбов наружные (с. externae columnarum, LNH) — К. спирального органа, образующие наружную стенку внутреннего туннеля.
Клетки стрекательные (син.: К. крапивные, нематоциты) — К. эктодермы кишечнополостных (гидры, медузы, актинии), секретирующие яды, вызывающие при попадании на кожу человека ожоги, временные параличи и другие явления интоксикации.
Клетки стреловидные (с. sagittales) — К. стреловидной формы, образующие кортиевы дуги.
Клетка сухожильная (с. tendinea, LNH) — фиброцит в составе сухожилия; К. с. расположены прослойками между первичными сухожильными пучками.
Клетка тиреоидная (с. thyroidea) — см. <<Тироцит>>.
Клетки тиреоидэктомии (с. thyroidectomiae) — гипертрофированные тиреотропоциты, образующиеся после повреждения или резекции щитовидной железы; способствуют интенсификации восстановительных процессов.
Клетки тиреотропные (с. thyrotropicae) — см. <<Тиреотропоциты>>.
Клетки тифозные (с. typhosae) — расположенные группами гипертрофированные ретикулярные К., образующиеся в групповых лимфатических фолликулах тонкой кишки (пейеровых бляшках) при брюшном тифе.
Клетки тутовые — крупные К. бурой жировой ткани или гигантские многоядерные К., содержащие в цитоплазме множество мелких жировых капель; при микроскопии выглядят как ягоды тутового дерева.
Клетки Тутона — см. <<Тутона клетки>>.
Клетка тучная (labrocytus) — см. <<Лаброцит>>.
Клетки Тцанка — см. Клетки акантолитические.
Клетки Уортина — Финкельдея — см. <<Уортина — Финкельдея клетки>>.
Клетка фагоцитирующая (phagocytus) — см. <<Фагоцит>>.
Клетки фаланговые внутренние (с. phalangeae internae, LNH) — К. спирального органа с отростками, над которыми лежат внутренние волосковые К.
Клетки фаланговые наружные (с. phalangeae externae, LNH; син. Дейтерса клетки) — К. спирального органа; между К. ф. н. расположены наружные волосковые К.
Клетка феохромная (phaeochromocytus; греч. phaios серый + chroma цвет) — см. <<Хромаффиноцит>>.
Клетка фолликулярная (с. follicularis) — см. <<Фолликулоцит яичниковый>>.
Клетки фоторецепторные — см. Клетки фотосенсорные.
Клетки фотосенсорные (с. photosensoriae, LNH; син.: К. светочувствительные, К. фоторецепторные) — К., обладающие способностью возбуждаться при световом раздражении; у человека К. ф. локализуются в нейроэпителиальном слое сетчатки.
Клетки Харгрейвса — см. Клетки красной волчанки.
Клетки Хофбауэра — см. <<Кащенко — Хофбауэра клетки>>.
Клетка хромаффинная (chromaffinocytus) — см. <<Хромаффиноцит>>.
Клетки хромофильные (с. chromophilicae) — см. <<Аденоциты>> хромофильные.
Клетки хромофобные (с. chromophobicae) — см. <<Аденоциты>> хромофобные.
Клетка хрящевая (chondrocytus) — см. <<Хондроцит>>.
Клетка центроацинозная (с. centroacinosa) — см. <<Эпителиоцит центроацинозный>>.
Клетка шванновская — см. <<Леммоцит>>.
Клетка шеечная — камбиальная К. шейки фундальной железы желудка.
Клетка шиповатая (с. spinosa) — l) неороговевающего эпителия — см. <<Эпителиоцит шиповатый>>;
2) эпидермиса — см. <<Эпидермоцит шиповатый>>.
Клетки Штернберга — см. <<Березовского — Штернберга клетки>>.
Клетки Штернгеймера — Мальбина — см. <<Штернгеймера — Мальбина клетки>>.
Клетки Штиллинга — см. <<Штиллинга клетки>>.
Клетка Шультце — см. Клетка обонятельная.
Клетка эндотелиальная (endotheliocytus) — см. <<Эндотелиоцит>>.
Клетка эндотелиальная звёздчатая (endotheliocytus stellatus) — см. <<Ретикулоэндотелиоцит>> звездчатый.
Клетки энтерохромаффинные — см. <<Аргентаффиноциты кишечные>>.
Клетка эозинофильная (с. eosinophilica) — см. Клетка ацидофильная.
Клетка эпендимная (ependymocytus) — см. <<Эпендимоцит>>.
Клетка эпителиальная (epitheliocytus, LNH; син. эпителиоцит) — общее название К. эпителиальных тканей.
Клетка эпителиоидная (с. epithelioidea) — К. неэпителиальной природы, сходная по строению с эпителиальной клеткой.
Клетка Эрлиха — см. <<Лаброцит>>.
Клетка юкставаскулярная (с. juxtavascularis, LNH; син.: Гормагтига клетки, Гурмагтига клетки — нрк) — общее название К. овальной или неправильной формы, входящих в состав юкстагломерулярного комплекса, расположенных в виде островка между приносящей и выносящей артериолами.
Клетка юкстагломерулярная (с. juxtaglomerularis, LNH; син. К. околоклубочковая) — К. юкстагломерулярного комплекса, расположенная в средней оболочке стенки приносящей артериолы; содержит много митохондрий и рибосом.
Клетки Яворского — см. <<Яворского клетки>>.
Орфографический словарь Лопатина
кл`етка, кл`етка, -и, р. мн. -ток
Словарь Ожегова
КЛ’ЕТКА, -и, жен.
1. Помещение со стенками из поставленных с промежутками прутьев. К. для птиц, для зверей.
2. Отдельный квадрат разграфлённого пространства. Клетки шахматной доски. Ткань в крупную клетку.
• Грудная клетка часть туловища, ограниченная грудными позвонками, рёбрами и грудиной; костная основа этой части туловища.
Лестничная клетка пространство, в к-ром расположены лестничные марши.
уменьш. клеточка, -и, жен. Тетрадь в клеточку.
прил. клеточный, -ая, -ое (к 1 знач.). Клеточные несушки. Клеточное звероводство.
II. КЛ’ЕТКА, -и, жен. Элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Нервная к. Мышечная к.
уменьш. клеточка, -и, жен.
прил. клеточный, -ая, -ое. Клеточная оболочка. Клеточное строение ткани.
Словарь Ушакова
КЛ’ЕТКА, клетки, ·жен.
1. Помещение для птиц и мелких животных в форме коробки из металлических или деревянных прутьев. Канарейка в клетке.
Огороженное решеткой место, закрытое со всех сторон, для животных. Тигр беспокойно бегал по клетке.
2. Способ складывать дрова или другие материалы - друг на друга рядами, расположенными крест-накрест. Сложить бревна в клетку. Кирпичи для просушки были сложены клетками.
3. Каждый из квадратиков на пространстве, разграфленном двумя рядами параллельных линий, пересекающимися под прямым углом. На шахматной доске чередуются черные и белые клетки.
4. Простейший организм или основная часть живого организма, состоящая из протоплазмы, ядра, оболочки (биол.). Нервная клетка.
• В клетку или клетками - о рисунки или графлении клетками (см. выше, 3 ·знач. ). Тетрадь в клетку. Материя в клетку или клетками. Грудная клетка (анат.) - часть туловища, ограниченная ребрами и заключающая в себе легкие и сердце.
Толковый словарь Ефремовой
[клетка]
1. ж.
1)
а) Помещение для птиц и животных со стенками из железных или деревянных прутьев.
б) Часть сооружения, помещения, пространства, ограниченного, огражденного решеткой, прутьями и т.п.
в) разг. Подъемное устройство в шахте; клеть.
2) перен. разг. Маленькая комната, тесное помещение.
3) Способ укладки каких-л. материалов (бревен, дров, досок, кирпича и т.п.) в виде четырехугольника параллельными пересекающимися рядами.
4)
а) Четырехугольник, изображенный на поверхности чего-л.
б) Участок поля четырехугольной формы.
2. ж.
Элементарная живая система, основа строения и жизнедеятельности всех животных и растительных организмов, состоящая из протоплазмы, ядра и оболочки.
Философский энциклопедический словарь
КЛЕТКА – в биологии низшая ступень органической индивидуальности.
Рус. арго (Елистратов)
см.:
Смирный как сто обезьян в клетке
Научнотехнический Энциклопедический Словарь
КЛЕТКА, в биологии - основной компонент, из которого состоят все растительные и животные ткани. Клетка является наименьшей живой частицей, способной существовать независимо и обладающей собственной саморегулирующейся химической системой. Большинство клеток состоит из МЕМБРАНЫ, окружающей желеобразную массу ЦИТОПЛАЗМЫ, и расположенного в центре ЯДРА. Ядро является основой всей структуры, в нем находятся ХРОМОСОМЫ, содержащие ДНК. Животные клетки отличаются разнообразием форм. Например, ЭРИТРОЦИТ (красное кровяное тельце) представляет собою двояковогнутый диск, а НЕЙРОН - это длинное волокно. Клетки растений и водорослей заключены внутри стенки, что придает им большую жесткость. Клетки бактерий также имеют стенки, но лишены ядра и хромосом; у них петля ДНК плавает в цитоплазме. Более развитые клетки (имеющие ядра) часто содержат внутри мембраны также другие структуры, например, МИТОХОНДРИИ и ХЛОРОПЛАСТЫ. см. также ЭУКАРИОТЫ, ПРОКАРИОТЫ.
Все животные клетки поразительно сходны по строению. У миллионов различных видов животных, от простейших губок до сложнейших млекопитающих, клетки, из которых они состоят, практически одинаковы по внутренней организации. Человеческое тело состоит из 10 триллионов клеток, причем каждая клетка выполняет свою специфическую функцию, однако деятельность их всех согласована, что дает телу возможность существовать. Современные микроскопические исследования выявили сложность строения животной клетки. Одни ее компоненты служат для поддержания формы, другие собирают и переносят сложные молекулы, третьи предназначены для осуществления процессов деления клетки. Различные процессы внутри клеток протекают в особых отделах, называемых органеллами. Многие ор-ганеллы имеются и в животных, и в растительных клетках, однако между ними имеется весьма существенная разница: животные клетки не содержат хлоропластов и потому не могут осуществлять фотосинтез — они получают необходимую энергию от усваиваемой пищи. Животные клетки содержат несколько органелл Самая важная из них — это ядро (1), информационный центр клетки, в котором содержится генетический материал в виде удлиненных нитевидных хромосом. Ядро ограничено ядерной мембраной (2), в которой имеются поры (3), обеспечивающие сообщение между ядром и другими частями клетки. 8 ценгре ядра располагается ядрышко (4), в котором образуются рибосомы (5). В ри-босомах происходит выработка белка клетки;они прикрепляются к наружной поверхности грубой эндоплазмйческой сети (6). Эта сеть представляет собой систему уплощенных полостей и трубок, соединенных с мембраной ядра Она является источником информационных молекул РНК, управляющих синтезом белка и поступающих на рибосомы В ней же образуются ли-пиды, которые образуют мембрану клетки. Гладкая эндо-плазматическая сеть(7), примыкающая к грубой, вырабатывает небольшие покрытые оболочкой сферы, называемые мембранными пузырьками (8). Их назначение — переносить белки к комплексу Гольджй (9), где производится модификация, сортировка и упаковка многих больших молекул в другие пузырьки, отделяющиеся от комплекса (10) Далее они направляются к другим органеллам либо выделяются за пределы клетки Благодаря проникновению пузырьков внутрь клеточной мембраны частицы могут транспортироваться из клетки (этот процесс называется экзо-цитоз) (11 —13). Аналогично осуществляется и проникновение частиц внутрь клетки (14 — 17)(эндоцитоз). Молекулы, поступающие в клетку, могут расщепляться энзимами, содержащимися в особых пузырьках, называемых лизосомами (18). Митохондрии (19) служат источниками энергии для клегки; из кислорода и питательных веществ ими вырабатывается АТФ, который затем расходуется на различные процессы метаболизма. Большинство этих процессов представляет собой химические реакции, протекающие в водной среде цитоплазмы (20). Цитоплазма пронизана белковыми волокнами (микротрубочки, 21), играющими ропь каркаса или скелета, поддерживающего форму клетки, а также служащего для передвижения. Исходным пунктом этих нитей являются центриолй (22), которые также способствуют вы-страйванйю хромосом во время деления клетки. Клеточная мембрана — это ТОНКИЙ ДВОЙНОЙ СЛОЙ ЛйПИДНЫХ молекул (1), окружающий цитоплазму всех клеток. Лишь немногие молекулы могут сами по себе пройти сквозь клеточную мембрану. Специальные транспортные белки и выстеленные белками каналы (2) в мембране пропускают внутрь сахара, аминокислоты и необходимые ионы, например, натрий и каль ций. Другие белки (3) действуют как приемники химических сигналов и обеспечивают химический «код», по которому их распознают другие клетки, в частности, клетки иммунной системы. Молекулы холестерина (4) необходимы для обеспечения устойчивости мембраны, хотя при их переизбытке она может стать слишком жесткой.
Клетки снабжаются энергией преимущественно за счет преобразования АТФ(адено-зинтрифосфата) в АДФ (аде-назиндифосфат). АТФ вырабатывается в митохондриях (1) за счет рециркуляции АДФ. Первый этап заключается в расщеплении пи-рувата (2) — топливной молекулы, произведенной в цитоплазме из глюкозы — на углекислый газ,водород и электроны высокой энергии. Эти электроны проходят по цепочке белков внутрь мембраны (3), сообщая им энер гию, необходимую для накачивания протонов(4)в межмебранное пространство (5). По мере того, как количество поступающих протонов увеличивается, в этом пространстве создается давление, вытесняющее протоны обратно Протоны могут проделать этот возвратный путь только посредством генератора АТФ (6) — энзима, называемого АТФ-синтетазой, и в ходе этого процесса они приводят во вращение «лопатки» этой турбины, в результате чего образуется АТФ (7).
Растительные клетки отличаются огромным . лзнообразием форм и размеров, и не все из них содержат все признаки «типичной клетки», указанные ниже на рисунке. Однако все они имеют, помимо клеточной мембраны, еще и жесткую наружную оболочку из целлюлозы. Считается, что первые растительные клетки появились более чем миллиард лет назад, когда клетки, питавшиеся веществами из первичных морей, были колонизованы бактериями, способными к ФОТОСИНТЕЗУ. С ц'чением времени бактерии потеряли свою самостоятельность и превратились в хлоропласты. Сахара, получающиеся в результате фотосинтеза, расщепляются в МИТОХОНДРИЯХ, высвобождая энергию, питающую деятельность клетки, или используются как источник углерода для создания более крупных молекул, из которых образуется новое растительное вещество. Наличие структур, в которых вырабатывается и хранится питание, также является чертой, отличающей растительные клетки от животных. Раствор биологических молекул, окружающий ядро — это цитоплазма (9), которая соединяется с прилегающими клетками посредством плазмодесмов (10). Митохондрии (11), лизосо-мы (12) и тельца Гольджи (13) присутствуют во всех клетках, так же, как микронити и микротрубочки (14), образующие внутренний каркас клетки Наиболее примечательным компонентом растительной клетки является ядро (1), в котором содержится ДНК, то есть генетический материал клетки, обычно в виде тонких полосок, носящих название хроматина (2). Информационные молекулы, скопированные с ДНК, проходят через поры в ядерной мембране (3)и прикрепляются к рибосомам (4), где они управляют синтезом новых клеточных белков. Рибосомы прикреплены к параллельным мембранам — эндоплазмической сети (5), образующей в клетке нечто вроде паутины. Если в эндоплазмической сети нет рибо-сом, она называется гладкой (6). Растительные клетки содержат также хлоропласты (7) и микротела, в которых содержатся энзимы (8).
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: КЛЕТКА


будет выглядеть так: Что такое КЛЕТКА