Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

КАЛОРИМЕТР

Большая советская энциклопедия (БЭС)
(от лат. calor — тепло и ...метр)
        прибор для измерения количества теплоты, выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «К.» был предложен А. Лавуазье и П. Лапласом (1780).
         Современные К. работают в диапазоне температур от 0,1 до 3500 К и позволяют измерять количество теплоты с точностью до 10-2%. Устройство К. весьма разнообразно и определяется характером и продолжительностью изучаемого процесса, областью температур, при которых производятся измерения, количеством измеряемой теплоты и требуемой точностью.
         К., предназначенный для измерения суммарного количества теплоты Q, выделяющейся в процессе от его начала до завершения, называют К.-интегратором; К. для измерения тепловой мощности L и её изменения на разных стадиях процесса — измерителем мощности или К.-осциллографом. По конструкции калориметрической системы и методу измерения различают жидкостные и массивные К., одинарные и двойные (дифференциальные).
         Жидкостный К.-интегратор переменной температуры (рис. 1) с изотермической оболочкой применяют для измерений теплот растворения и теплот химических реакций. Он состоит из сосуда с жидкостью (обычно водой), в котором находятся: камера для проведения исследуемого процесса («калориметрическая бомба»), мешалка, нагреватель и термометр. Теплота, выделившаяся в камере, распределяется затем между камерой, жидкостью и др. частями К., совокупность которых называют калориметрической системой прибора. Изменение состояния (например, температуры) калориметрической системы позволяет измерить количество теплоты, введённое в К. Нагрев калориметрической системы фиксируется термометром. Перед проведением измерений К. градуируют — определяют изменение температуры калориметрической системы при сообщении ей известного количества теплоты (нагревателем К. или в результате проведения в камере химической реакции с известным количеством стандартного вещества). В результате градуировки получают тепловое значение К., т. е. коэффициент, на который следует умножить измеренное термометром изменение температуры К. для определения количества введённой в него теплоты. Тепловое значение такого К. представляет собой Теплоёмкость (с) калориметрической системы. Определение неизвестной теплоты сгорания или др. химической реакции Q сводится к измерению изменения температуры t калориметрической системы, вызванного исследуемым процессом: Q = ct. Обычно значение Q относят к массе вещества, находящегося в камере К.
         Калориметрические измерения позволяют непосредственно определить лишь сумму теплот исследуемого процесса и различных побочных процессов, таких как перемешивание, испарение воды, разбивание ампулы с веществом и т.п. Теплота побочных процессов должна быть определена опытным путём или расчётом и исключена из окончательного результата. Одним из неизбежных побочных процессов является Теплообмен К. с окружающей средой посредством излучения и теплопроводности. В целях учёта побочных процессов и прежде всего теплообмена калориметрическую систему окружают оболочкой, температуру которой регулируют.
         У жидкостных изотермическую К. температуру оболочки поддерживают постоянной. При определении теплоты химической реакции наибольшие затруднения часто связаны не с учётом побочных процессов, а с определением полноты протекания реакции и с необходимостью учитывать несколько реакций.
         В К.-интеграторе другого вида — изотермическом (постоянной температуры) введённая теплота не изменяет температуры калориметрической системы, а вызывает изменение агрегатного состояния тела, составляющего часть этой системы (например, таяние льда в ледяном калориметре Бунзена). Количество введённой теплоты рассчитывается в этом случае по массе вещества, изменившего агрегатное состояние (например, массе растаявшего льда, которую можно измерить по изменению объёма смеси льда и воды), и теплоте фазового перехода (См. Теплота фазового перехода).
         Массивный К.-интегратор чаще всего применяют для определения энтальпии (См. Энтальпия) веществ при высоких температурах (до 2500 °С). Калориметрическая система у К. этого типа представляет собой блок из металла (обычно из меди или алюминия) с выемками для сосуда, в котором происходит реакция, для термометра и нагревателя. Энтальпию вещества рассчитывают как произведение теплового значения К. на разность подъёмов температуры блока, измеряемых после сбрасывания в его гнездо ампулы с определённым количеством вещества, а затем пустой ампулы, нагретой до той же температуры.
         Теплоёмкость газов, а иногда и жидкостей, определяют в т. н. проточных лабиринтных К. — по разности температур на входе и выходе стационарного потока жидкости или газа, мощности этого потока и джоулевой теплоте, выделенной электрическим нагревателем К.
         К., работающий как измеритель мощности, в противоположность К.-интегратору должен обладать значительным теплообменом, чтобы вводимые в него количества теплоты быстро удалялись и состояние К. определялось мгновенным значением мощности теплового процесса. Тепловая мощность процесса находится из теплообмена К. с оболочкой. Такие К. (рис. 2), разработанные французским физиком Э. Кальве (Е. Calvet, 1895—1966), представляют собой металлический блок с каналами, в которые помещают цилиндрические ячейки. В ячейке проводится исследуемый процесс; металлический блок играет роль оболочки (температура его поддерживается постоянной с точностью до 10-5—10-6 К). Разность температур ячейки и блока измеряется термобатареей, имеющей до 1000 спаев. Теплообмен ячейки и эдс термобатареи пропорциональны малой разности температур, возникающей между блоком и ячейкой, когда в ней выделяется или поглощается теплота. В блок помещают чаще всего две ячейки, работающие как дифференциальный К.: термобатареи каждой ячейки имеют одинаковое число спаев и поэтому разность их эдс позволяет непосредственно определить разность мощности потоков теплоты, поступающей в ячейки. Этот метод измерений позволяет исключить искажения измеряемой величины случайными колебаниями температуры блока. На каждой ячейке монтируют обычно две термобатареи: одна позволяет скомпенсировать тепловую мощность исследуемого процесса на основе Пельтье эффекта, а другая (индикаторная) служит для измерения нескомпенсированной части теплового потока. В этом случае прибор работает как дифференциальный компенсационный К. При комнатной температуре такими К. измеряют тепловую мощность процессов с точностью до 1 мквт.
         Обычные названия К. — «для химической реакции», «бомбовый», «изотермический», «ледяной», «низкотемпературный» — имеют историческое происхождение и указывают главным образом на способ и область использования К., не являясь ни полной, ни сравнительной их характеристикой.
         Общую классификацию К. можно построить на основе рассмотрения трёх главных переменных, определяющих методику измерений: температуры калориметрической системы Tc; температуры оболочки To, окружающей калориметрическую систему количества теплоты L, выделяемой в К. в единицу времени (тепловой мощности).
         К. с постоянными Tc и To называют изотермическим; с Tc = To — адиабатическим; К., работающий при постоянной разности температур Tc — To, называют К. с постоянным теплообменом; у изопериболического К. (его ещё называют К. с изотермической оболочкой) постоянна To, а Tc является функцией тепловой мощности L.
         Важным фактором, влияющим на окончательный результат измерений, является надёжная работа автоматических регуляторов температуры изотермических или адиабатических оболочек. В адиабатическом К. температура оболочки регулируется так, чтобы она была всегда близка к меняющейся температуре калориметрической системы. Адиабатическая оболочка — лёгкая металлическая ширма, снабженная нагревателем, — уменьшает теплообмен настолько, что температура К. меняется лишь на несколько десятитысячных град/мин. Часто это позволяет снизить теплообмен за время калориметрического опыта до незначительной величины, которой можно пренебречь. В случае необходимости в результаты непосредственных измерений вводится поправка на теплообмен, метод расчёта которой основан на законе теплообмена Ньютона — пропорциональности теплового потока между К. и оболочкой разности их температур, если эта разность невелика (до 3—4 °С).
         Для К. с изотермической оболочкой теплоты химической реакции могут быть определены с погрешностью до 0,01%. Если размеры К. малы, температура его изменяется более чем на 2—3 °С и исследуемый процесс продолжителен, то при изотермической оболочке поправка на теплообмен может составить 15—20% от измеряемой величины и существенно ограничить точность измерений. В этих случаях целесообразнее применять адиабатическую оболочку.
         При помощи адиабатического К. определяют теплоёмкость твёрдых и жидких веществ в области от 0,1 до 1000 К. При комнатных и более низких температурах адиабатический К., защищенный вакуумной рубашкой, погружают в Дьюара сосуд (См. Дьюара сосуды), заполненный жидким гелием, водородом или азотом (рис. 3). При повышенных температурах (выше 100 °С) К. помещают в термостатированную электрическую печь.
         Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Скуратов С. М., Колосов В. П., Воробьев А. Ф., Термохимия, ч. 1—2, М., 1964—66; Кальве Э., Прат А., Микро-калориметрия, пер. с франц., М., 1963; Experimental thermochemistry, v. 1—2 N. Y. — L., 1956-62.
         В. А. Соколов.
         0241632951.tif
        Рис. 1. Жидкостный калориметр-интегратор с изотермической оболочкой (схема): 1 — «калориметрическая бомба»; 2 — нагреватель для возбуждения реакции; 3 — собственно калориметр (сосуд, заполненный водой); 4 — термометр сопротивления; 5 — холодильник (трубка, через которую можно пропускать холодный воздух); 6 — изотермическая оболочка калориметра, заполненная водой; 7 — нагреватель оболочки; 8 — контактный термометр для регулировки температуры оболочки; 9 — контрольный термометр; 10 — мешалки с приводом.
        Рис. 2. Калориметр Э. Кальве для измерения тепловой мощности процессов (схема): 1 — калориметрическая ячейка с термопарами; 2 — блок калориметра; 3 — металлические конусы для создания однородного поля температур в блоке; 4 — оболочка; 5 — нагреватель для термостатирования прибора; 6 — тепловые экраны; 7 — тепловая изоляция; 8 — трубка для введения вещества в калориметр; 9 — окно для отсчётов показаний гальванометра 10.
         0220709272.tif
        Рис. 3. Адиабатический калориметр для определения теплоёмкости при низких температурах (схема): 1 — калориметр (а — сосуд для вещества, б — термометр сопротивления, в — нагреватель); 2 — адиабатические оболочки (ширмы); 3 — вакуумная рубашка; 4 — труба для откачки; 5 — трубка для электрических проводов.
Современная Энциклопедия
КАЛОРИМЕТР (от латинского calor - тепло и...метр), прибор для измерения количества теплоты, выделяющейся или поглощающейся при различных физических, химических, биологических или промышленных процессах. Используется, например, для определения теплоты сгорания топлива. Количество теплоты чаще всего определяется по изменению температуры какой-либо жидкости известной массы, в которую опускают образец.
Медицинская энциклопедия
(Калори- + греч. metreo измерять)
прибор для измерения количества тепла, выделенного в ходе физического, химического или биологического процесса; различные типы К. используются при медико-биологических исследованиях.
Орфографический словарь Лопатина
калор`иметр, калор`иметр, -а (к кал`ория)
Словарь Даля
муж. снаряд для определения степени теплоты, тепломер; или снаряд для скопленья, сосредоточенья теплоты; теплохранитель. Калорифер, печь, топка; вообще снаряд для согреванья комнат.
Словарь Ожегова
КАЛОР’ИМЕТР, -а, муж. Прибор для измерения количества теплоты.
Словарь Ушакова
КАЛОР’ИМЕТР, калориметра, ·муж. (от ·лат. calor - теплота и ·греч. metron - мера) (физ.). Прибор для измерений количества теплоты.
Толковый словарь Ефремовой
[калориметр]
м.
Прибор для измерения количества теплоты, выделяющейся или поглощаемой при каком-л. физическом, химическом или биологическом процессе.
Научнотехнический Энциклопедический Словарь
КАЛОРИМЕТР, прибор, используемый при экспериментах, связанных с измерением количества тепла. Обычно это сосуд из материала, обладающего высокой проводимостью, например, из меди, снабженный теплоизоляцией. Существует много вариантов калориметра для различных целей, например, для измерения числа калорий в пищевых продуктах, удельной теплоемкости, скрытого тепла, теплового эффекта при химических реакциях и т.п. В калориметрической бомбе производится сжигание в кислороде какого-либо вещества с целью определения количества тепла, выделяющегося при его сгорании, например, при определении калорийности пищевых продуктов.
Калориметры измеряют количество тепла, поглощенного или выделенного в ходе химической реакции.В калориметре высокого давления прибор размещается в вакууме с целью его изоляции (1). Поток жидкости или газа с постоянным расходом поступает на калориметр (2). Термометр, снабженный платиновым со противлением (3), измеряет температуру вещества на входе. Нагреватель (4) сообщает жидкости или газу известное количество тепла внутри экранирующей оболочки (5), которая препятствует рассеянию энергии Изменение температуры определяется вторым термометром (6), также заэк-ранированным (7).
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: КАЛОРИМЕТР


будет выглядеть так: Что такое КАЛОРИМЕТР