Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

ЭКОЛОГИЯ

Большая советская энциклопедия (БЭС)
(от греч. oikos — жилище, местопребывание и ...Логия)
        биологическая наука, изучающая организацию и функционирование надорганизменных систем различных уровней: популяций, видов, биоценозов (сообществ), экосистем, биогеоценозов и биосферы. Часто Э. определяют также как науку о взаимоотношениях организмов между собой и с окружающей средой. Современная Э. интенсивно изучает также проблемы взаимодействия человека и биосферы.
         Основные разделы экологии. Э. подразделяется на общую Э., исследующую основные принципы организации и функционирования различных надорганизменных систем, и частную Э., сфера которой ограничена изучением конкретных групп определённого таксономического ранга. Общая Э. классифицируется по уровням организации надорганизменных систем. Популяционная Э. (иногда называется демэкологией, или Э. населения) изучает популяции — совокупности особей одного вида, объединяемых общей территорией и Генофондом. Э. сообществ (или биоценология) исследует структуру и динамику природных сообществ (или ценозов) —совокупностей совместно обитающих популяций (См. Популяция) разных видов. Биогеоценология— раздел общей Э., изучающий экосистемы (См. Экосистема) (Биогеоценозы). В СССР и в некоторых зарубежных европейских странах биогеоценологию иногда считают самостоятельной наукой, отличной от Э. В США, Великобритании и многих других зарубежных странах термин «экосистема» используется чаще, чем биогеоценоз, и биогеоценология как отдельная наука там не выделяется. Частная Э. состоит из Э. растений и Э. животных. Сравнительно недавно оформилась Э. бактерий и Э. грибов. Правомерно и более дробное деление частной Э. (например, Э. позвоночных, Э. млекопитающих, Э. зайца-беляка и т.п.). Относительно принципов деления Э. на общую и частную нет единства во взглядах учёных. По мнению некоторых исследователей, центральный объект Э. — экосистема, а предмет частной Э. отражает подразделение экосистем (например, на наземные и водные; водные подразделяются на морские и пресноводные экосистемы; пресноводные экосистемы, в свою очередь, — на экосистемы рек, озёр, водохранилищ и т.д.). Э. водных организмов и образуемых ими систем изучает Гидробиология.
         Применяется и деление Э. на аутоэкологию (См. Аутоэкология), исследующую взаимоотношения отдельных видов со средой (главным образом с абиотическими факторами), и синэкологию (См. Синэкология), изучающую сообщества и биогеоценозы; это деление предложено швейцарским ботаником К. Шрётером. Популяционная Э. связывает оба эти раздела.
         В мировой экологической литературе не существует единого мнения относительно объёма понятия «Э. растений». В СССР и зарубежных европейских странах (за исключением Великобритании) её трактуют как аутоэкологию, считая сообщества растений объектом фитоценологии или геоботаники. В США и Великобритании под Э. растений понимают науку, исследующую как отдельные виды, так и сообщества.
         Многие отрасли Э. имеют ярко выраженную практическую направленность. Такова сельскохозяйственная Э., предмет которой — создаваемые человеком сельскохозяйственные экосистемы (см. Агрофитоценозы).
         Влияние природной среды на человеческое общество, особенности урбанизированных биогеоценозов изучает возникшая в середине 20 в. Э. человека. Возросшая опасность радиоактивного загрязнения окружающей среды привела к возникновению радиоэкологии (См. Радиоэкология). Учение о биосфере, ещё не получившее отдельного названия, разрабатывается в особенно тесном контакте с биогеохимией (См. Биогеохимия). Отношения организмов к абиотической и биотической среде в прошлые геологической эпохи, проблемы реконструкции древних ценозов по ископаемым остаткам составляют предмет палеоэкологии (См. Палеоэкология).
         Очерк развития экологии. Термин «Э.» предложил в 1866 немецкий зоолог Э. Геккель, определив Э. как «общую науку об отношениях организмов к окружающей среде, куда мы относим в широком смысле все “условия существования”».
         Предыстория Э. восходит к трудам натурфилософов Древней Греции и Рима. Ценные экологические наблюдения содержатся в работах естествоиспытателей 18 в. (особенно К. Линнея, Ж. Бюффона, П. С. Палласа и И. И. Лепёхина). Э. зарождалась в ботанике и зоологии. На формирование её в первую очередь оказали влияние работы, в которых изучался образ жизни организмов, а также зависимость их распространения и развития от различных факторов среды. Особенно велико было значение исследования географического распространения растений — с самого начала экологического по своей сущности. В начале 19 в. немецкий естествоиспытатель А. Гумбольдт на основе многолетних наблюдений в Центральной и Южной Америке показал зависимость высотной и широтной поясности от температуры и дал первую классификацию жизненных форм (См. Жизненная форма) растений. Швейцарский ботаник О. П. Декандоль выделял (1832) даже науку «эпирреологию», изучающую взаимодействие растений и внешней среды.
         Для развития Э. в России большое значение имели труды К. Ф. Рулье, в которых подчёркивалась необходимость изучения животных во взаимодействии с другими организмами и абиотической средой; особо отмечалась также роль условий, создаваемых человеком (антропогенный фактор). Настоящим экологическим исследованием была работа Н. А. Северцова «Периодические явления в жизни зверей, птиц и гад Воронежской губернии» (1855), анализирующая обширный материал по сезонным явлениям в жизни наземных позвоночных Воронежской губернии
         К середине 19 в. больших успехов достигла агрохимия. Согласно «закону минимума», сформулированному немецким учёным Ю. Либихом, в конкретных условиях не все питательные элементы почвы ограничивают урожай, а лишь содержащиеся в недостаточном для растения количестве. Претерпев некоторые уточнения, данный принцип стал позднее одним из ведущих при рассмотрении факторов, ограничивающих распространение или количественное развитие организмов.
         На формирование Э. как самостоятельной науки решающее влияние оказало «Происхождение видов...» Ч. Дарвина (1859), в котором подчёркнута важность изучения механизмов борьбы за существование, внутривидовых и межвидовых взаимоотношений. Под непосредственным влиянием идей Дарвина Геккель пришёл к выводу о необходимости выделения Э. в особую биологическую дисциплину. Важный этап развития Э. связан с признанием необходимости целостного изучения естественной совокупностей растений и животных. Этому способствовало внедрение специальных терминов для характеристики таких совокупностей. Во всей европейской (в т. ч. и в русской) научной литературе быстро распространился термин «биоценоз», предложенный (1877) немецким зоологом К. Мебиусом. В работах американских учёных чаще используется термин «сообщество».
         В начале 20 в. ставится комплексная задача исследования совокупности растений и животных в их взаимодействии с абиотической средой. При её решении большие успехи достигнуты в изучении внутренних водоёмов, которые легче представить целостными системами и характеризовать обобщающими показателями (швейцарский исследователь Ф. Форель, немецкий — К. Кнауте). Науку о различных формах проявления жизни в водной среде стали называть гидробиологией. Гидробиологи первыми начали изучать роль организмов в круговороте веществ и трансформации энергии в природе (американские учёные Э. Бердж и Ч. Джадей). Ими были сформулированы важные для развития всей Э. понятия: Биомасса (немецкий учёный Р. Демоль) и продукция (немецкий учёный А. Тинеман).
         Количественное изучение круговорота веществ на суше началось позднее (в 30—50-х гг. 20 в.). Необходимыми предпосылками их развития были успехи зародившегося в России почвоведения, в частности разработанное В. В. Докучаевым ещё в конце 19 в. представление о почве как об особом естественноисторическом теле, образованном взаимодействием абиотических и биотических компонентов среды. В. И. Вернадский назвал такие природные тела биокосными.
         Большая часть экологических исследований на суше в конце 19 — начале 20 вв. велась ботаниками и зоологами раздельно, что нашло отражение в публикации первых экологических сводок: по Э. растений (точнее — экологической географии) — датского ботаника Й. Варминга (1895) и немецкого учёного А. Шимпера (1898), по Э. животных — немецкого зоолога Р. Гессе (1912) и американского— Ч. Адамса (1913). Сообществам растений в начале 20 в. уделяется особое внимание. В России оформилась фитосоциология (позднее названная фитоценологией (См. Фитоценология)), изучающая закономерности организации растительных сообществ (И. К. Пачоский, С. Н. Коржинский, П. Н. Крылов). В это время интенсивно исследовались закономерности процесса смены сообществ — сукцессии (См. Сукцессия) (финский учёный Р. Хульт, американский— Г. Каулс). Американский ботаник Ф. Клементс, изучавший сукцессии, пытался проводить аналогии между строением и развитием организма и сообщества. Значит. вехами в изучении растительных сообществ были работы Г. Ф. Морозова «Учение о лесе» (1912) и В. Н. Сукачёва «Введение в учение о растительных сообществах» (1915). Крупные научные школы фитоценологии возникли в Западной Европе: франко-швейцарская — вначале в Цюрихе (К. Шрётер, Э. Рюбель, Г. Брокман-Ерош), а затем в Монпелье (Ж. Браун-Бланке) и скандинавская (упсальская — Г. Дю Рье).
         Среди экологов-зоологов также возрос интерес к исследованию сообществ. Так, американский учёный В. Шелфорд, внёсший большой вклад в различные области Э., определяет Э. как науку о сообществах, относя всю аутоэкологию к области физиологии. На развитие теоретической Э. большое влияние оказала книга английского учёного Ч. Элтона «Экология животных» (1927), в которой формулируется проблема изучения организации (структуры) сообществ. описываются закономерности соотношения численности организмов разных трофических уровней (пирамида чисел), уточняется понятие экологической ниши (См. Экологическая ниша), предложенное ранее американским зоологом Дж. Гринеллом (1917), акцентируется внимание на колебаниях численности популяций. В Э. животных развёртывается экспериментальное изучение популяций. Американский учёный Р. Чепмен вводит понятие биотического потенциала, характеризующего скорость роста (размножения и выживаемости) популяции. Австралийский энтомолог А. Николсон (1933) описывает динамику численности популяции как саморегулирующийся процесс. В результате к 30-м гг. в Э. животных складывается представление о популяции как о целостной, наделённой специфическими свойствами совокупности особей, которая не может быть сведена к их простой сумме. С 20—30-х гг. в Э. внедряются методы математической статистики (в т. ч. применяемые ранее в демографии) и моделирования. Итальянский исследователь В. Вольтерра (1926) и американский — А. Лотка (1925) разработали математические модели роста отдельной популяции и динамики популяций, связанных отношениями конкуренции и хищничества.
         После Великой Октябрьской социалистической революции советские экологи начали интенсивно изучать растительность и животный мир различных ландшафтно-географических зон СССР. Л. Г. Раменский развивает концепцию непрерывности (Континуума) растит. покрова, вводит понятие экологической индивидуальности вида и понятие консорция (См. Консорций).
         В 20—30-х гг. советский учёный В. И. Вернадский создал учение о биосфере (См. Биосфера). Идеи В. И. Вернадского оказали огромное влияние на экологическое мышление в СССР и за рубежом; особенно актуальными они стали в 50—60-х гг., в значительной степени в связи с возросшей угрозой глобальных нарушений в биосфере, вызванных деятельностью человека.
         Всемирную известность получили экспериментальные работы с простейшими и микроорганизмами советского учёного Г. Ф. Гаузе, сформулировавшего принцип конкурентного исключения. Согласно этому принципу, два вида, занимающие одну экологическую нишу, не могут сосуществовать в одном месте неограниченно долго.
         В пропаганде экологических идей и подготовке кадров в СССР важную роль сыграли сводки Д. Н. Кашкарова: «Среда и сообщество» (1933) и «Основы экологии животных» (1938). В ходе развития Э. менялись её содержание и определение. Так, в 30-х гг. подчёркивалось, что Э. изучает адаптации (приспособления) организмов к окружающей среде. Исследование сообществ организмов иногда считалось предметом самостоятельной науки — биоценологии. Использовав большой материал по динамике численности позвоночных животных, С. А. Северцов (1941) связал достижения Э. с эволюционными идеями и определил Э. как науку о механизмах борьбы за существование.
         Советскими экологами растений разрабатывается начатое В. Н. Сукачёвым экспериментальное направление в фитоценологии, основная задача которого — исследование механизмов внутривидовой и межвидовой конкуренции.
         В 30—50-х гг. экологи животных в СССР ведут работы в полевых условиях: анализируют колебания численности вредных грызунов и промысловых млекопитающих (Б. С. Виноградов, Н. П. Наумов, О. И. Семёнов-Тян-Шанский, С. П. Наумов, А. Н. Формозов и др.); изучают влияние снежного покрова на животных (А. Н. Формозов, А. А. Насимович, В. П. Теплов); исследуют почвенных беспозвоночных (М. С. Гиляров).
         Широкое использование количественных методов характерно и для морской гидробиологии (С. А. Зернов, И. И. Месяцев, А. А. Шорыгин, В. Г. Богоров, В. П. Воробьев и др.). Важную роль в её развитии сыграла научная, организаторская и педагогическая деятельность Л. А. Зенкевича. В гидробиологии зарождается направление, изучающее биологическую продуктивность (См. Биологическая продуктивность) водоёмов, крупный вклад в развитие которого внесли советские исследователи (на Косинской лимнологической станции под Москвой — Л. Л. Россолимо, Е. В. Боруцкий, С. Н. Кузнецов, Г. С. Корзинкин и др.). Там впервые в мире по интенсивности фотосинтеза была количественно определена первичная продукция в водоёме (Г. Г. Винберг, 1932).
         Большое значение для развития Э. имело формулирование понятий экосистемы и биогеоценоза. Английский ботаник А. Тенсли (1935) назвал экосистемой любую совокупность совместно обитающих организмов (автотрофов и гетеротрофов) и необходимой для их существования абиотической среды. Более конкретное понятие биогеоценоза, обоснованное В. Н. Сукачёвым, подразумевает единство растений, животных и микроорганизмов, населяющих определённый участок земной поверхности с его ландшафтными, климатическими, почвенными и гидрологическими условиями. Введение этих понятий способствовало сближению разных разделов Э. и привело к постановке таких общеэкологическим проблем, как изучение круговорота вещества и потока энергии в экосистеме. Представление о трофических (пищевых) уровнях позволило количественно охарактеризовать процесс превращения вещества и энергии при переходе с одного уровня на другой (американские экологи Дж. Хатчинсон, Р. Линдеман, Г. Одум). Продукционно-энергетическое направление развивал советский учёный В. С. Ивлев, известный также своими исследованиями в области количественных характеристик питания рыб.
         В 40—50-х гг. советский ботаник Т. А. Работнов, а в 60-х гг. А. А. Уранов разрабатывают учение о популяциях у растений. Позже аналогичные работы появляются и за рубежом (английский учёный Дж. Харпер).
         Наряду с увеличением числа исследований популяций и экосистем в СССР развивается и аутоэкология, тесно связанная с физиологией и широко использующая экспериментальные методы (И. Д. Стрельников, И. В. Кожанчиков, В. В. Алпатов, Н. И. Калабухов, А. Д. Слоним и др.). Крупный вклад в изучение фотопериодизма у животных внёс советский учёный А. С. Данилевский. В целом для Э. в СССР характерны практическая направленность исследований и тесная связь с решением народнохозяйственных задач. Экологическое направление в паразитологии (В. А. Догель, К. И. Скрябин, В. Н. Беклемишев и др.) привело к созданию учения о природной очаговости болезней человека и домашних животных (Е. Н. Павловский и др.).
         В 50-х гг. формируется общая Э. Предпосылками для её развития послужили: достижения гидробиологии (прежде всего продукционно-энергетического направления); осмысление большого фактического материала, накопленного Э. наземных животных и Э. растений; формулировка понятий экосистемы и биогеоценоза; широкое внедрение математических методов, системного подхода и представления об уровнях организации живой материи. В первых сводках по общей Э. (американские экологи Дж. Кларк и Ю. Одум) много внимания уделяется рассмотрению экосистем. В задачи общей Э. включается обычно и изучение основных принципов организации популяций и сообществ.
         В 60—70-х гг. наблюдается бурный рост экологических исследований во всём мире. Причина его, во-первых, — в зрелости самой Э. как науки, чётком определении объектов и методов исследования; во-вторых, в актуальности проблем повышения продуктивности экосистем и охране окружающей среды, необычайно возросшей в ходе научно-технической революции. Параллельно развивается и теоретическое направление в Э. (американский эколог Р. Мак-Артур и испанский эколог Р. Маргалеф), широко использующее математическое моделирование.
         Характерная черта современной Э. — исследование процессов, охватывающих всю биосферу. Особенно пристально изучается взаимодействие человека и биосферы. С 1964 начались работы, проводимые в рамках Международной биологической программы (МБП): её основная цель — изучение продуктивности экосистем в разных областях земного шара. В процессе выполнения МБП стандартизирована методика определения продукции различных трофических звеньев. Исследования по биологической продуктивности продолжены международной программой «Человек и биосфера» (ЧиБ), в которой главное внимание уделено анализу воздействия деятельности человека на биосферу. Объединению экологов разных стран способствовало возникновение Международного общества экологов (ИНТЭКОЛ), 1-й конгресс которого состоялся в Гааге в 1974.
         Основные задачи и проблемы экологии. Основная задача Э. на современном этапе — детальное изучение количественными методами основ структуры и функционирования природных и созданных человеком систем. Изучение популяций — естественных совокупностей особей одного вида, являющихся одновременно элементами системы вида и системы биогеоценоза, показало (советский учёный Н. П. Наумов) наличие у них сложной иерархической структуры. В задачи популяционной Э. входит изучение пространственного размещения особей, возрастной, половой и этологической (поведенческой) структуры популяции. Центральное место занимает проблема динамики численности популяции и механизмов её регуляции, рассматриваемая как регулируемый процесс, в котором участвуют внутрипопуляционный (например, конкуренция за пищу) и биоценотический (воздействие хищников, паразитов, возбудителей заболеваний и эпизоотий) механизмы. Крупный вклад в популяционную Э. внёс советский учёный С. С. Шварц. Советским энтомологом Г. А. Викторовым показана закономерная смена регулирования механизмов в зависимости от уровня численности популяции. При исследовании регуляции численности млекопитающих большое внимание уделяется анализу взаимосвязанных поведенческих, физиологических и гормональных механизмов. Наибольшее внимание уделяется динамике численности популяций практически важных видов: вредителей сельского и лесного хозяйства, носителей и переносчиков возбудителей заболеваний, объектов рыбного и охотничьего промысла. Многие проблемы популяционной Э. решаются на модельных лабораторных популяциях различных организмов. Для оценки скорости роста популяции используются методы демографии, а также математического моделирования. Взаимосвязь генетического состава популяции и её экологических характеристик — одна из проблем эволюционной Э. Важное место занимает исследование взаимодействий популяций разных видов: конкуренции и хищничества. При наблюдении конкуренции используется понятие экологической ниши, для которого разрабатываются методы количественной оценки.
         Много внимания уделяется изучению структуры и функционирования сообществ (биоценозов); установлению закономерных соотношений численностей видов в сообществе. Соотношение численности и биомасс разных видов также подчиняется определённым правилам. Видовая структура сообщества меняется в процессе его развития — сукцессии, а также под действием различных факторов, связанных с хозяйственной деятельностью человека. Важной задачей является изучение стабильности сообществ и их способности противостоять неблагоприятным воздействиям.
         При исследовании экосистем открывается возможность количественного анализа круговорота вещества и изменений потока энергии при переходе с одного пищевого уровня на другой. Такой продукционно-энергетический подход на популяционном и биоценотическом уровнях позволяет сравнивать различные естественные и создаваемые человеком экосистемы.
         Основные этапы круговорота вещества и потока энергии хорошо известны для пресноводных экосистем. Для некоторых водоёмов выяснено соотношение энергии, фиксированной зелёными растениями в самом водоёме и поступающей с органическим веществом из наземных экосистем. Подобные исследования позволяют подойти к ещё мало изученным проблемам обмена веществом и энергией между разными экосистемами. Большие задачи стоят перед Э. по количеств. оценке продукционных процессов в океане. Величину первичной продукции в водных экосистемах определяют по интенсивности выделения кислорода или включением радиоактивной метки при фотосинтезе. Несмотря на большую методическую сложность, достигнуты успехи в продукционно-энергетических исследованиях на суше. Изучен круговорот биогенных элементов и первичная продукция в основных типах наземных экосистем. Показано, что общий объём первичной продукции на суше примерно в два раза превышает суммарную величину продукции Мирового океана, причём особенно велика продуктивность тропических лесов. Для оценки запасов биомассы в наземных экосистемах применяют фотографирование поверхности Земли в видимой и инфракрасной частях спектра с космических кораблей. Изучение использования синтезированного автотрофами органического вещества показало, что на суше только малая его часть непосредственно потребляется растительноядными животными, а основная масса — в виде отмерших растительных тканей — сапрофагами и сапрофитами. Наряду с пищевыми связями в экосистемах существуют и другие межорганизменные связи, в частности — осуществляемые через продукты обмена веществ, выделяемые организмами во внешнюю среду. Исследование их интенсивно ведётся как в наземных, так и в водных экосистемах.
         Особенно важно изучение биосферы в целом: определение первичной продукции и деструкции по всему земному шару, глобального круговорота биогенных элементов; эти задачи могут быть решены только объединёнными усилиями учёных разных стран.
         Разнообразие явлений, изучаемых современной Э., объясняет её широкие связи со многими естественными и гуманитарными науками. Популяционная Э. связана с генетикой, физиологией, этологией, биогеографией, систематикой и демографией. Биогеоценология — с ландшафтоведением, биогеохимией, почвоведением, гидрологией, гидрохимией, климатологией и другими науками о среде. Под влиянием Э. во многих биологических науках формируются направления, рассматривающие те или иные стороны изучения живого с точки зрения Э. таковы: экологическая физиология, экологическая морфология, экологическая цитология, экологическая генетика и др.
         Большое влияние на Э. оказали достижения математики, физики, химии, философии. В свою очередь Э. выдвигает новые задачи перед математикой (особенно в сфере статистики и моделирования). Весомый вклад внесла Э. в формирование представлений о системной организации живой материи. Значительно расширяются связи Э. с гуманитарными науками: социологией, политической экономией, юриспруденцией, этикой. При исследовании агроценозов Э. тесно взаимодействует со всем комплексом сельскохозяйственных наук. В тесном содружестве с биогеохимией Э. исследует процессы миграции в биосфере биогенных элементов (См. Биогенные элементы), лимитирующих производство сельскохозяйственных продуктов.
         Практическое значение экологии. На современном этапе развития человеческого общества, когда в результате научно-технической революции усилилось его воздействие на биосферу, практическое значение Э. необычайно возросло. Э. должна служить научной базой любых мероприятий по использованию и охране природных ресурсов, по сохранению среды в благоприятном для обитания человека состоянии (см. Охрана природы, Природопользование). Познание основных принципов трансформации вещества и энергии в природных экосистемах создаёт теоретическую основу для разработки практических мероприятий по увеличению количества и качества пищевых продуктов, производимых в биосфере. Исследования природных механизмов регуляции численности популяций служат основой планирования и разработки систем мероприятий по управлению численностью экономически важных видов. Знание основных факторов динамики популяции необходимо для ведения борьбы с вредителями сельского и лесного хозяйства, с переносчиками и хранителями заболеваний. Так, достижения Э. позволяют перестроить систему борьбы с вредителями сельского и лесного хозяйства, перейдя от попыток их полного истребления с помощью пестицидов широкого действия, наносящего большой вред всему биогеоценозу, к действительной регуляции численности определённых видов биологическими и агротехническими методами и только ограниченно — химическими.
         Э. служит теоретической основой для разработки мер по переходу от промысла диких видов растений и животных к их культивированию и к другим формам более рационального их использования. На данных Э. основное рациональное ведение рыболовства, рыбоводства и охотничьего хозяйства.
         Э. изучает взаимодействие сельскохозяйственных и природных экосистем, сочетания окультуренных и естественных ландшафтов. Одна из важнейших практических задач Э. — изучение евтрофирования внутренних водоёмов, возникающего в результате нарушения их биологического и гидрохимического режима, приводящего к неблагоприятным для человека последствиям: массовому развитию планктонных синезелёных водорослей («цветению воды»), исчезновению ценных пород рыб, ухудшению качества воды. Разработка мер по охране и рациональному использованию дикой природы, создание сети заповедников, заказников и национальных парков, планирование ландшафта также производятся по рекомендациям, разрабатываемым экологами. Ярко выраженная практическая направленность характерна для Э. человека (см. раздел Социальные аспекты экологии).
         В развитии народного хозяйства Коммунистическая партия Советского Союза в качестве одного из важнейших направлений выделяет рациональное использование природных ресурсов и охрану окружающей среды. Успешное развитие этих работ требует широкой пропаганды экологических знаний среди всех слоев населения, формирования основ научных экологических представлений. Обязанность советских людей бережно относиться к природе и охранять её богатства занесена в Конституцию СССР.
         Основные научные учреждения и периодические издания. В СССР работы по Э. ведутся в институтах и учреждениях АН СССР: Институте эволюционной морфологии и экологии животных им. А. Н. Северцова (Москва), Институте экологии животных и растений (Свердловск), Зоологическом и Ботаническом институтах (Ленинград), Лаборатории лесоведения (Москва), Институте географии (Москва), Биологическом институте (Новосибирск), Институте биологии и почвоведения (Владивосток), а также в зоологических и ботанических институтах АН союзных республик, в Институте пустынь АН Туркменской ССР (Ашхабад) и во Всесоюзном институте защиты растений ВАСХНИЛ (Пушкин, около Ленинграда). Исследования по водной Э. проводятся в Институте биологии внутренних вод АН СССР (пос. Борок Ярославской области), Институте гидробиологии АН УССР (Киев), Институте океанологии (Москва), Всесоюзном научно-исследовательском институте рыбного хозяйства и океанографии (Москва), Институте биологии южных морей АН УССР (Севастополь) и др. Экологические исследования ведутся в учебных заведениях, а также в заповедниках, охотничьих хозяйствах, противочумных институтах, санэпидстанциях и других противоэпидемических учреждениях.
         Основные русские издания, в которых публикуются результаты экологических исследований: «Журнал общей биологии» (с 1940), «Экология» (с 1970), «Зоологический журнал» (с 1916), «Ботанический журнал» (с 1916), «Бюллетень Московского общества испытателей природы. Отдел биологический» (с 1922), «Гидробиологический журнал» (с 1965), «Океанология» (с 1961), «Биология моря» (с 1975) и др. Вопросы прикладной Э. освещаются также в журналах: «Лесоведение» (с 1967), «Охота и охотничье хозяйство» (с 1955), «Рыбоводство и рыболовство» (с 1958); «Водные ресурсы» (с 1972), «Защита растений» (с 1956) и др.
         Наиболее крупные зарубежные периодические издания по Э.: «Ecology» (Brooklyn, с 1920); «Ecological Monographs» (Durham, с 1931); «Journal of Animal Ecology» (Camb., с 1932); «Journal of Ecology» (L., с 1913); «Oikos» (Cph., с 1949); «Oecologia» (В., с 1968); «Ekologia Polska» (Warsz., с 1953); «Journal of Applied Ecology» (Oxf., с 1964); «Internationale Revue der gesamten Hydrobiologie und Hydrographie» (Lpz., с 1908); «Theoretical Population Biology» (N. Y.— L., с 1970); «Limnology and Oceanography» (Balt., с 1956). Статьи по Э. публикуются также в крупных естеств.-науч. журналах: «Science» (N. Y., с 1883), «American Naturalist» (N. Y., с 1867), «Nature» (L.— N. Y., с 1869). Периодические сборники, публикующие главным образом обзорные статьи: «Annual Review of Ecology and Systematics» (Palo Alto, с 1970) и «Advances in Ecological Research» (L.— N. Y., с 1962).
         Лит.: Пачоский И. К., Основы фитосоциологии, Херсон, 1921; Вернадский В. И., Биосфера, 1—2, Л., 1926; Северцов С. А., Динамика населения и приспособительная эволюция животных, М.Л., 1941; Ивлев В. С., Экспериментальная экология питания рыб, М., 1955; Лэк Д., Численность животных и ее регуляция в природе, пер. с англ., М., 1957; Винберг Г. Г., Первичная продукция водоемов, Минск, 1960; Наумов Н. П., Экология животных, 2 изд., М., 1963; Основы лесной биогеоценологии, под ред. В. Н. Сукачева и Н. В. Дылиса, М., 1964; Шенников А. П., Введение в геоботанику, Л., 1964; Макфедьен Э., Экология животных, пер. с англ., М., 1965; Родин Л. Е., Базилевич Н. И., Динамика органического вещества и биологический круговорот зольных элементов и азота в основных типах растительности земного шара, М.— Л., 1965; Викторов Г. А., Проблемы динамики численности насекомых на примере вредной черепашки, М., 1967; Константинов А. С., Общая гидробиология, 2 изд., М., 1972; Грейг-Смит П., Количественная экология растений, пер. с англ., М., 1967; Дювиньо П., Танг М., Биосфера и место в ней человека (экологические системы и биосфера), пер. с франц., 2 изд., М., 1973; Шварц С. С., Эволюционная экология животных, Свердловск, 1969; Очерки по истории экологии, М., 1970; Раменский Л. Г., Проблемы и методы изучения растительного покрова, Л., 1971; Тишлер В., Сельскохозяйственная экология, пер. с нем., М., 1971; Биосфера, пер. с англ., М., 1972; Фарб П., Популярная экология, пер. с англ., М., 1971; Ковальский В. В., Геохимическая экология, М., 1974; Одум Ю., Основы экологии, пер. с англ., М., 1975; Дажо Р., Основы экологии, пер. с франц., М., 1975; Дрё Ф., Экология, пер. с франц., М., 1976; Lotka A., Elements of physical biology, Balt., 1925; Gause G. F., Struggle for existence, Balt., 1934; Weaver J. Е., Clements F. E., Plant ecology, 2 ed., N. Y.— L., 1938; Principles of animal ecology, Phil.— L., 1949; Andrewartha Н. G., Birch L. C., The distribution and abundance of animals, Chi., 1954; Clarke G. L., Elements of ecology, N. Y., 1965; Schwerdtfeger F., Okologie der Tiere, Bd 1—3, Hamb.B., 1963—75; Margalef R., Perspectives in ecological theory, Chi.— L., 1968; Chemical ecology, ed. E. Sondheimer, J. B. Simeone, N. Y.—L., 1970; Whittaker R. Н., Communities and ecosystems, 2 ed., Toronto, 1975; Krebs Ch. J., Ecology: the experimental analysis of the distribution and abundance, N. Y., 1972; Mac-Arthur R. H., Geographical ecology. Patterns in the distribution of species, N. Y., 1972; Emlen J. М., Ecology: an evolutionary approach, Mass., 1973; McNaughton S. J., Wolf L. L., General ecology, N. Y., 1973: Pianka E. P., Evolutionary ecology, N. Y., 1974; Stugren B., Grundlagen der allgemeinen okologie, 2 Aufl., Jena, 1974; Ecology and evolution of communities, ed. М. L. Cody, J. М. Diamond, Camb.—L., 1975; Larcher W., Okologie der Pflanzen, 2 Aufl., Stuttg., 1976; Methods in plant ecology, ed. S. B. Chapman, Oxf., 1976.
         А. М. Гиляров, Н. П. Наумов.
        
         Социальные аспекты экологии. Научно-техническая революция связана с непрерывной интенсификацией и расширением масштабов хозяйственной деятельности общества. Это обостряет внимание к экологическим проблемам, в частности к прямому и побочному влиянию производств. деятельности на состав и свойства атмосферы, тепловой режим планеты, фон радиоактивности, к загрязнению Мирового океана, водоёмов суши и уменьшению запасов пресной воды, уменьшению запасов невозобновимых сырьевых и энергетических ресурсов, выделению в биосферу неперерабатываемых биохимических и токсичных отходов, экологическому воздействию антропогенных, особенно урбанизированных, ландшафтов, влиянию экологических факторов на физическое и психическое здоровье человека и на генофонд человеческих популяций и т.п.
         Социальные аспекты Э. стали предметом специальных научных исследований в 20 в. Уже в 19 в. Д. П. Марш, проанализировав многообразные формы разрушения человеком природного равновесия, сформулировал программу охраны природы. Французские географы 20 в. (П. Видаль де ла Блаш, Ж. Брюн, Э. Мартонн) разработали концепцию географии человека, предмет которой — изучение группы явлений, происходящих на нашей планете и причастных к деятельности человека. В работах представителей голландской и французской географической школы 20 в. (Л. Февр, М. Сор), в конструктивной географии, развитой советскими учёными А. А. Григорьевым, И. П. Герасимовым, анализируется воздействие человека на географический ландшафт, воплощение его деятельности в социальном пространстве.
         Развитие геохимии и биогеохимии выявило превращение производств. деятельности человечества в могучий геохимический фактор, что послужило основанием для выделения новой геологической эры — антропогенной (русский геолог А. П. Павлов) или психозойской (американский учёный Ч. Шухерт). Учение В. И. Вернадского о биосфере и превращении её в ноосферу связано с новым взглядом на геологические последствия социальной деятельности человечества.
         Социальные аспекты Э. изучаются и в исторической географии, исследующей связи между этническими группами и природной средой, и особенно в социологии, в частности в социальной Э., анализирующей взаимоотношения между социальными группами и средой. Основатели Чикагской социологической школы (Р. Парк, Э. Берджесс, Р. Д. Макензи), сформулировавшие одну из первых трактовок Э. человека, или социальной Э., показали зависимость пространственной организации города и расселения различных социальных групп от механизмов экономической конкуренции.
         Предмет и статус социальной Э. является объектом дискуссий: она определяется либо как системное понимание окружающей среды, либо как наука о социальных механизмах взаимосвязи человеческого общества с окружающей средой, либо как наука, делающая акцент на человеке как биологическом виде (homo sapiens). Тем не менее Э. существенно изменила научное мышление не только естественников, но и гуманитариев, выработав новые теоретические подходы и методологической ориентации у представителей различных наук, способствовав формированию нового экологического мышления. Экологи с помощью системного подхода анализируют природную среду как сложную, дифференцированную систему, различные компоненты которой находятся в динамическом равновесии, рассматривают биосферу Земли как экологическую нишу человечества, связывая окружающую среду и деятельность человека в единую систему «природа — общество», раскрывают воздействие человека на равновесие природных экосистем, ставят вопрос об управлении и рационализации взаимоотношений человека и природы.
         Экологическое мышление находит своё выражение в различных выдвигаемых вариантах переориентации технологии и производства. Одни из них связаны с настроениями экологического пессимизма и алармизма (от англ. alarm — тревога), с возрождением реакционно-романтических концепций руссоистского толка, с точки зрения которых первопричиной экологического кризиса является сам по себе научно-технический прогресс, с возникновением доктрин «ограниченного роста», «устойчивого состояния» и т.п., считающих необходимым резко ограничить либо вообще приостановить технико-экономическое развитие.
         Другие в противовес этой пессимистической оценке будущего развития человечества и перспектив природопользования выдвигают проекты радикальной перестройки технологии, избавления её от просчётов, приведших к загрязнению окружающей среды (программа альтернативной науки и технологии, выдвинутая американским учёным Д. Габором, модель замкнутых производств. циклов, развитая американским экологом Б. Коммонером), создания новых технических средств и технологических процессов (транспорта, энергетики и др.), приемлемых с экологической точки зрения.
         Осознание социальных аспектов Э. привело к формированию экологической экономики, которая принимает в расчёт расходы не только на освоение природы, но и на охрану и восстановление экосферы, подчёркивает важность не только критериев прибыльности и производительности, но и экологической обоснованности технических нововведений, экологического контроля над планированием промышленности и природопользования. Решающие шаги в формировании экологической экономики были сделаны советскими экономистами (С. Г. Струмилин и др.).
         Развитие Э. послужило мощным импульсом в выдвижении новых ценностей перед человечеством — сохранения экосистем, отношения к Земле как к уникальной экосистеме, осмотрительного и бережного отношения к живому и т.д. Тенденции к экологической переориентации этики обнаруживаются в различных этических концепциях (учении А. Швейцера о благоговейном отношении к жизни, этике природы американского эколога О. Леопольда, космической этике К. Э. Циолковского, этике любви к жизни, разработанной советским биологом Д. П. Филатовым, и др.).
         Формирование экологического мышления в условиях капитализма сталкивается с отсутствием достаточно эффективных механизмов рациональной регуляции обмена веществ между обществом и природой. Отрицательные последствия воздействия на биосферу оказываются здесь настолько внушительными, что о нём говорят как об экологическом кризисе.
         Предпосылки для рационального регулирования человеком своего обмена веществ с природой создаются впервые в социалистическом обществе. На первых этапах своего существования Советское государство не всегда могло уделять должное внимание экологическим проблемам, вследствие чего некоторые крупные хозяйственные мероприятия не получали всестороннего экологические обоснования. В отличие от капиталистических стран, где экологические мероприятия неизбежно носят частичный, ограниченный характер, социалистический общественный строй позволяет планомерно осуществлять комплексные долгосрочные программы, направленные на сохранение и улучшение среды обитания, на преодоление отрицательных экологических последствий научно-технического прогресса. Планетарный характер воздействия человека на среду обитания требует международного сотрудничества, осуществления общенациональных и межгосударственных мероприятий.
         Лит.: Марш Д. П., Человек и природа, СПБ, 1866; Дорст Ж., До того как умрет природа, пер. с франц., М., 1968; Уатт К., Экология и управление природными ресурсами, пер. с англ., М., 1971; Эренфельд Д., Природа и люди, пер. с англ., М., 1973; Взаимодействие природы и общества. (Философские, географические, экологические аспекты проблемы), М., 1973; Человек и среда его обитания, «Вопросы философии», 1973, № 1—4; Коммонер Б., Замыкающийся круг, пер. с англ., Л., 1974; его же, Технология прибыли, пер. с англ., М., 1976; Гудожник Г. С., Научно-техническая революция и экологический кризис, М., 1975; Уорд Б., Дюбо Р., Земля только одна, пер. с англ., М., 1975; Новиков Э. А., Человек и литосфера, Л., 1976; Будыко М. И., Глобальная экология, М., 1977; Бехренс В. В., Динамика использования природных ресурсов, в сборнике: Современные проблемы кибернетики, пер. с англ., М., 1977; McKenzie R. D., The ecological approach to the study of the human community, N. Y., 1924; Park R. E., Human communities. The city and human ecology, Glencoe, 1952; Bourgoignie G. E., Perspectives en ecologie humaine, P., 1972; Ehrlich P. R., Human ecology: problems and solutions, S. F., 1973; Odum Н. Т., Odum E. G., Energy basis for man and nature, N. Y., 1976.
         А. П. Огурцов, Б. Г. Юдин.
Мультимедийная энциклопедия
наука об отношениях организмов с окружающей средой. Термин "экология" был предложен немецким зоологом Э.Геккелем в 1866, но широкое распространение получил только в начале 20 в. Сам предмет этой науки не отличается новизной. Изучением животных и растений в естественных условиях обитания ранее занимались, по определению старых авторов, "естественная история" и "биономия". В течение многих лет экология оставалась сугубо специальной научной дисциплиной, мало известной широкой публике. Однако с конца 1960-х годов экологи все чаще стали предупреждать о неблагоприятных изменениях в окружающей среде, вызванных быстрым ростом населения и развитием промышленных технологий. Состояние среды обитания стало волновать общественное мнение, а природоохранные и государственные организации начали обращаться к экологам за помощью в решении проблем, вызванных загрязнением воды и воздуха или бездумным применением гербицидов и пестицидов. Развитие биологических наук пошло по двум основным направлениям: одно основывается на систематике изучаемых животных и растений, второе - на методах и подходах, применяемых в данной области биологического знания. К первому направлению относятся такие четко определенные разделы биологии, как, например, микология (наука о грибах), энтомология (наука о насекомых) или орнитология (наука о птицах). Разделить отдельные биологические дисциплины, относящиеся ко второму направлению, сложнее. Например, изучение строения животных и растений проводится в рамках нескольких наук: цитологии, гистологии, анатомии. Функционирование различных живых структур - от клеток и тканей до органов и целого организма - составляет предмет физиологии. Однако традиционный подход физиолога может постепенно трансформироваться и стать подходом экологическим, если сделать основной упор на изучении реакций и поведения целого организма, а также взаимоотношений организмов одного или разных видов. Весьма характерно, что некоторые сведения о поведении животных и их реакциях на внешние факторы (например, на свет или тепло) приводятся как в учебниках экологии, так и в учебниках физиологии. Различие между экологией и физиологией в общих чертах сводится к тому, что первая стремится изучать животных и растения в естественных условиях, тогда как вторая исследует организмы в стенах лаборатории. Разумеется, ценность полевых исследований окажется небольшой, если их результаты не будут сопоставляться с лабораторными данными, полученными при изучении реакций изолированных организмов на те или иные воздействия, производимые в строго контролируемых условиях. Что касается лабораторных физиологических исследований, то и они имеют смысл только в том случае, если их данные сравниваются с материалами наблюдений за организмами в естественной среде. Будучи тесно взаимосвязанными дисциплинами, физиология и экология тем не менее существенно отличаются друг от друга по методам, терминологии и общим подходам. Экология в широком понимании, как изучение организмов и биологических процессов в естественных условиях, охватывает области нескольких самостоятельных наук. Так, к экологическим наукам несомненно относятся лимнология, изучающая жизнь в пресных водах, и океанология, которая исследует организмы, живущие в морях и океанах. По сути дела, экологический подход к чисто медицинским проблемам демонстрирует эпидемиология, изучающая процессы распространения заболеваний. С позиций экологии иногда трактуются многие вопросы биологии человека и социологии. животные в сообществе связаны в пищевые (трофические) цепи, совокупность которых образует пищевую (трофическую) сеть. Пищевые цепи начинаются с зеленых растений, образующих в процессе жизнедеятельности богатые энергией органические вещества, от которых в конце концов зависит существование всех других организмов. Одни животные - растительноядные - питаются непосредственно зелеными растениями. Другие - хищники - потребляют травоядных или других хищников. Всеядные используют в пищу как растения, так и животных. Схема показывает некоторые из наиболее существенных связей в одной пищевой сети. Стрелка, идущая от насекомых к мышам, указывает на то, что насекомые поедаются мышами. Таким образом, направление стрелок совпадает с движением потока энергии. СРЕДА ОБИТАНИЯ Среду обитания можно определить как совокупность всех внешних факторов и условий, воздействующих на отдельный организм или на определенное сообщество организмов. Таким образом, это сложное понятие подразумевает, что вычленить отдельные факторы в окружении организма очень трудно, а порой и невозможно. Говоря экологическим языком, каждое животное или растение связано со своим особым местообитанием, описание которого - это прежде всего констатация условий, в которых это животное или растение существует. Ради удобства все условия могут быть подразделены на физические (климатические), химические и биологические. Климат. Эколог уделяет особое внимание климату, однако стандартные данные, предоставляемые метеорологическими станциями, его, как правило, не устраивают. Ведь для эколога в первую очередь важны те условия, в которых протекает реальная жизнь конкретных животных или растений, например микроклимат, характерный для лесной подстилки, прибрежной полосы озера или сердцевины гниющего бревна. Эколог также должен учитывать изменения климата в пространстве и времени. Ему необходимо исследовать множество климатических градиентов на местности. Некоторые из них - например, зависящие от географической широты или высоты над уровнем моря, - совершенно очевидны. Другие - например, связанные с глубиной пруда, высотой ярусов в лесу или с переходом от лесного массива к лугу, - необходимо специально изучать. Изменения климата во времени могут включать такие явления, как циклическая динамика различных показателей в течение суток, нерегулярные колебания от одного дня к другому, а также многолетние климатические циклы и перемены, связанные с процессами геологического характера. Оценка климатических условий экологом имеет три уровня, каждому из которых соответствует своя методика изучения; это климат географический, климат конкретного местообитания ("экоклимат") и климат непосредственного окружения организма ("микроклимат"). Географический климат, сведения о котором собирают метеорологические станции, служит не только стандартом, с которым сопоставляются данные более специальных исследований, но и основой для анализа крупномасштабного распространения тех или иных организмов. Однако сама по себе информация о географическом климате лишена смысла без дополнительных сведений о климатических условиях в конкретных местообитаниях. Например, из сообщения метеостанции о наблюдавшихся заморозках неясно, где они, собственно говоря, были - на открытой местности, где располагались приборы, или же в лесу, где обитают интересующие эколога животные или растения. Порой температура и влажность резко различаются даже в соседних биотопах. Аналогичным образом очень большое значение имеет стратификация физических условий, наблюдаемая в почве, водоеме или в лесу. Иногда для того, чтобы разобраться в поведении того или иного животного, экологу надо знать условия температуры и влажности под покровом листвы, на поверхностной пленке воды или в мякоти плода, в ходе, проделанном личинкой насекомого. Химическая среда. Химическому составу среды особое внимание обычно уделяют исследователи, имеющие дело с водными организмами. Свойства растворенных веществ и их концентрация, конечно, важны сами по себе как условия, обеспечивающие питание (прежде всего растений), но они оказывают и другие воздействия. Например, соленость может влиять на удельный вес организмов и осмотическое давление внутри клеток. Важны для организмов также реакция среды (кислая или щелочная) и состав и содержание растворенных газов. В наземной среде химические особенности почвы и почвенной влаги оказывают существенное воздействие на растительность, а через нее и на животных. Биотическая среда. Биотические факторы среды проявляются через взаимоотношения организмов, входящих в одно сообщество. Исследовать растения или животные в "чистых культурах", вне связей с другими живыми существами, можно только в лаборатории. В природе многие виды тесно взаимосвязаны, и их отношения друг к другу как к компонентам окружающей среды могут носить чрезвычайно сложный характер. Что касается связей между сообществом и окружающей неорганической средой, то они всегда являются двусторонними, обоюдными. Так, характер леса зависит от соответствующего типа почв, но сама почва того или иного типа формируется в значительной мере под влиянием леса. Подобно этому, температура, влажность и освещенность в лесу определяются растительностью, но сформировавшиеся в результате климатические условия в свою очередь влияют на сообщество обитающих здесь организмов. Лимитирующие факторы. При анализе распределения отдельных организмов или целых сообществ экологи нередко обращаются к т. н. лимитирующим факторам. Исчерпывающее описание определенной среды не только невозможно, но и не нужно, поскольку распределение животных и растений (как по географическим зонам, так и по отдельным местообитаниям) может определяться всего одним фактором, например экстремальными (для данных организмов) температурами, слишком низкой (или слишком высокой) соленостью или недостатком пищи. Однако выделить такие лимитирующие факторы бывает нелегко, а попытки установить прямую связь между распределением организмов и каким-либо внешним фактором далеко не всегда удачны. Например, лабораторные опыты показывают, что некоторые животные, обитающие в солоноватых и морских водах, способны выносить изменения солености в широких пределах, а их кажущаяся приуроченность к узкому диапазону значений этого фактора определяется просто наличием в соответствующих местах подходящей пищи. БИОЛОГИЧЕСКИЕ СООБЩЕСТВА Одно из главных направлений экологических исследований - это изучение сообществ растений и животных, их описание, классификация и анализ взаимосвязей образующих их организмов. Термин "экосистема", тоже часто используемый экологами, обозначает сообщество в совокупности с условиями его существования, т.е. с неживыми (физическими) компонентами окружающей среды. Растительные сообщества изучены лучше, чем сообщества животных. Отчасти это объясняется тем, что именно характер растительности в значительной мере определяет состав обитающих в тех или иных местах животных. К тому же растительные сообщества более доступны для исследователя, тогда как прямые наблюдения за животными не всегда возможны, и даже для того, чтобы просто оценить их численность, экологи вынуждены обращаться к косвенным методам, например к отлову с помощью различных приспособлений. При классификации и описании сообществ обычно используют терминологию, разработанную ботаниками. Классификация сообществ. Хотя существуют многочисленные схемы классификации сообществ, ни одна из них не стала общепризнанной. Термин "биоценоз" часто используется для обозначения отдельного сообщества. Иногда выделяют иерарахическую систему сообществ возрастающей сложности: "консорции", "ассоциации", "формации" и т.д. Широко используемое понятие "местообитание" обозначает комплекс условий среды, необходимых для тех или иных конкретных видов растений или животных или для отдельного сообщества. Очевидно, что существует определенная иерархия сообществ и местообитаний. Например, озеро представляет собой крупную экологическую единицу, в пределах которой можно выделить сообщества организмов, связанные с берегом, мелководьями, глубинными участками дна или открытой частью водоема. В сообществе прибрежной зоны, в свою очередь, можно различить более мелкие и специализированные группы видов, обитающие около поверхности воды, на растениях определенного типа или в илистых отложениях на дне. Существуют, однако, большие сомнения относительно того, следует ли подробно классифицировать эти сообщества и жестко закреплять за ними те или иные наименования. Названия некоторых экологических сообществ используются биологами очень широко. Таковы, например, термины "планктон", "нектон" и "бентос". Планктоном называют совокупность мелких, главным образом микроскопических, организмов, живущих в толще воды и пассивно переносимых течениями. Нектон составляют более крупные и активно передвигающиеся водные животные (например, рыбы). К бентосу относятся организмы, живущие на поверхности дна или в толще донных отложений. Как в морях, так и в озерах планктонные организмы многочисленны и отличаются разнообразием. Именно они служат кормовой базой для более крупных животных, а в океане они практически определяют существование всех других обитателей водной толщи. См. также <<МОРСКАЯ БИОЛОГИЯ>>. Биологические сообщества нередко различают по "доминантным" или "субдоминантным" видам. Такой подход бывает удобен с практической точки зрения, особенно если речь идет о наземных экосистемах умеренной зоны, где один вид злаков может определять облик степи, а один вид деревьев - тип леса. Концепция доминирующих видов, однако, плохо применима к тропикам, а также к сообществам организмов, населяющих водную среду. Сукцессия сообществ. Экологи традиционно уделяли большое внимание изучению "сукцессии", т.е. закономерной последовательности изменений, связанных с развитием и старением сообществ или сменой сообществ в определенной местности. Сукцессию легче всего наблюдать в Западной Европе и Северной Америке, где деятельность человека, безжалостная, как геологический процесс, радикально изменила естественные ландшафты. На месте уничтоженных девственных лесов происходит медленная закономерная смена видов, приводящая в конечном итоге к восстановлению относительно устойчивого и мало меняющегося "климаксного" (зрелого) лесного сообщества. Большинство территорий, располагающихся вокруг древних центров западной цивилизации и доступных для экологических исследований, занято нестабильными переходными сообществами, которые развились на месте климаксных сообществ, разрушенных человеком. На территориях, в меньшей степени подверженных воздействию человека, сукцессия тоже происходит, хотя проявления ее не столь заметны. Например, она наблюдается там, где меняющая русло река образует из наносов новый берег, или там, где внезапный оползень освобождает от почвы голую поверхность скалы, или на том месте в лесу, где падает старое дерево. Сукцессия ярко проявляется в пресных водоемах. В частности, немало сил было потрачено на изучение процессов старения, или эвтрофирования, в озерах, приводящих к тому, что площадь открытой воды, постепенно сокращаясь, уступает место сплавине, а потом и болоту, которое само со временем превращается в наземную экосистему со свойственной ей сукцессией растительности. Загрязнение водоемов и усиление притока в них питательных веществ (например, при распашке земель и внесении удобрений) значительно ускоряет процессы эвтрофирования. Изучение взаимоотношений между различными группами организмов в сообществе представляет собой хотя и нелегкую, но очень интересную задачу. Взявшийся за ее разрешение исследователь должен использовать всю совокупность биологических знаний, поскольку любые процессы жизнедеятельности направлены в конечном счете на то, чтобы обеспечить выживание, размножение и расселение организмов в доступных и пригодных для их жизни местообитаниях. Изучая те или иные сообщества, эколог сталкивается с проблемой установления видовой принадлежности входящих в их состав растений и животных. Описать видовой состав даже простого сообщества очень трудно, и это обстоятельство чрезвычайно тормозит развитие исследований. Уже давно замечено, что наблюдение за каким-либо животным бессмысленно, если неизвестно, к какому виду оно относится. Однако ясно, что идентификация всех организмов, обитающих в определенной местности, - настолько трудоемкая задача, что сама по себе может превратиться в дело всей жизни. Именно поэтому считается целесообразным проводить экологические исследования в регионах, флора и фауна которых хорошо изучены. Обычно это умеренные широты, а не тропики, где многие растения и животные (в первую очередь различные беспозвоночные) до сих пор не идентифицированы или недостаточно исследованы. Пищевые цепи. Среди различных типов взаимосвязей внутри сообщества важное место занимают т.н. пищевые, или трофические, цепи, т.е. те последовательности разных видов организмов, по которым вещество и энергия передаются с уровня на уровень, поскольку одни организмы поедают другие. Примером простейшей пищевой цепи может служить ряд "хищные птицы - мыши - растения". Почти в каждом сообществе существует набор взаимосвязанных пищевых цепей, образующих единую пищевую сеть. Основой всех пищевых цепей и, соответственно, пищевой сети в целом являются зеленые растения. Используя энергию Солнца, они образуют сложные органические вещества из диоксида углерода и воды. Именно поэтому экологи называют зеленые растения продуцентами, или автотрофами (т.е. себя питающими). В отличие от них, консументы (или гетеротрофы), к которым относятся все животные и некоторые растения, не способны производить для себя питательные вещества и, чтобы восполнять энергетические затраты, должны использовать в пищу другие организмы. В свою очередь среди консументов выделяют группу травоядных (или "первичных консументов"), питающихся непосредственно растениями. Травоядные могут быть и очень крупными животными, как слон или олень, и очень мелкими, как многие насекомые. Хищники, или "вторичные консументы", - это животные, поедающие травоядных и таким опосредованным способом получающие энергию, запасенную в растениях. Многие животные в одних пищевых цепях выступают как первичные консументы, а в других - как вторичные; поскольку они могут потреблять как растительную, так и животную пищу, их называют всеядными. В некоторых сообществах присутствуют и т. н. третичные консументы (например, лисица), т.е. хищники, поедающие других хищников. Другое важное звено пищевой цепи - это редуценты (или деструкторы). К ним относятся главным образом бактерии и грибы, а также некоторые животные, например дождевые черви, потребляющие органическое вещество отмерших растений и животных. В результате деятельности редуцентов образуются простые неорганические вещества, которые, попадая в воздух, почву или воду, снова становятся доступными для растений. Таким образом, химические элементы и их различные соединения находятся в постоянном круговороте, переходя от организмов к абиотическим компонентам среды и затем вновь в организмы. См. также <<ЦИКЛ УГЛЕРОДА>>. В отличие от вещества, энергия не подвержена рециклизации, т.е. не может быть использована дважды: она движется только в одном направлении - от продуцентов, для которых источником энергии служит солнечный свет, к консументам и далее к редуцентам. Поскольку все организмы тратят энергию на поддержание процессов своей жизнедеятельности, на каждом трофическом уровне (в соответствующем звене пищевой цепи) расходуется значительное количество энергии. В результате каждому последующему уровню достается энергии меньше, чем предыдущему. Так, первичные консументы располагают меньшим количеством энергии, чем продуценты, а вторичным консументам ее достается еще меньше. Уменьшение доступного количества энергии при переходе на более высокий трофический уровень приводит к соответствующему снижению биомассы (т.е. суммарной массы) всех организмов этого уровня. Так, например, биомасса травоядных животных в сообществе значительно меньше биомассы зеленых растений, а биомасса хищников, в свою очередь, во много раз меньше биомассы травоядных. Описывая подобные соотношения, экологи нередко используют образ пирамиды, в основании которой находятся продуценты, а на вершине - хищники последнего (высшего) звена. Хотя суммарная масса организмов каждого последующего трофического уровня уменьшается, средняя масса одного организма обычно увеличивается. Например, в водной среде первое после растений звено пищевой цепи образовано очень мелкими, но чрезвычайно многочисленными животными; это могут быть обитающие на дне озер личинки некусающихся комаров хирономид или же населяющие толщу морей планктонные ракообразные. Последующие звенья представлены хищниками большего размера - вплоть до таких, которые, будучи очень крупными и мощными, уже не могут стать жертвами каких-либо других хищников. Хорошо прослеживаемое изменение размеров хищников при переходе с одного трофического уровня на другой объясняется тем, что каждый конкретный хищник питается животными примерно одной величины: со слишком крупными ему трудно справиться, а слишком мелкие оказываются крайне невыгодными жертвами, поскольку усилия, затраченные на их поиск, преследование и поедание, не компенсируются соответствующим энергетическим результатом. В отличие от пищевых цепей, составленных из хищников, цепи, включающие паразитов, характеризуются последовательным уменьшением размеров этих организмов. Концепция ниши. Отдельное звено определенной пищевой цепи обычно называют экологической нишей. Одна и та же ниша в различных частях света или различных средах обитания нередко бывает занята в чем-то сходными, но не родственными животными. Например, существуют ниши первичных консументов и крупных хищников. Последняя может быть представлена в одном сообществе дельфином косаткой, в другом - львом, а в третьем - крокодилом. Если обратиться к геологическому прошлому, можно привести довольно длинный список животных, когда-то занимавших экологическую нишу крупных хищников. Комменсализм и симбиоз. Внимание экологов к пищевым цепям может создать впечатление, что борьба видов за существование - это прежде всего борьба за выживание хищников и жертв. Однако это не так. Пищевые отношения не сводятся к отношениям "хищник - жертва": два вида животных в одном сообществе могут конкурировать из-за пищи, а могут кооперировать свои усилия. Источник пищи для одного вида часто является побочным продуктом деятельности другого. Зависимость животных, питающихся падалью, от хищников - только один из примеров. Менее очевидный случай - зависимость организмов, населяющих небольшие скопления воды в дуплах, от тех животных, которые эти дупла делают. Подобное извлечение одними организмами пользы из деятельности других называют комменсализмом. Если польза обоюдная, говорят о мутуализме или симбиозе. На самом деле отдельные виды в сообществе почти всегда находятся в двусторонних отношениях. Так, плотность популяции жертв зависит от активности хищников; сокращение численности последних может привести к настолько высокой плотности популяции жертв, что они начинают страдать от голода и эпидемий. См. также <<КОММЕНСАЛИЗМ>>; <<СИМБИОЗ>>. Укрытие. Межвидовые отношения в сообществе не сводятся к проблемам пищи. Порой очень важно иметь укрытие, защищающее от неблагоприятных климатических воздействий, а также от всевозможных врагов. Так, деревья в лесу важны не только как основа большинства пищевых цепей, но также как чисто механический каркас, дающий возможность развиться сложному сообществу различных организмов. Именно на деревьях держатся такие растения, как лианы и эпифиты, и обитает множество животных. Кроме того, деревья обеспечивают определенную защищенность организмов от неблагоприятных факторов окружающей среды и создают особый климат, необходимый для тех, кто живет под пологом леса. ЭКОЛОГИЯ ВИДОВ Важную часть экологии составляет изучение жизненных циклов различных видов животных и растений ("биономия"). Понять особенности структуры и функционирования целых сообществ без предварительного исследования потребностей и поведения доминирующих видов невозможно. Подобные исследования обычно относят к области "экологии видов" (в отличие от "экологии сообществ"). Чтобы получить представление об особенностях экологии какого-либо вида животных или растений, необходимо обратить внимание на то, как и с какой скоростью эти организмы растут, как и чем они питаются, как размножаются, расселяются и переживают неблагоприятные в климатическом отношении периоды. Здесь необходимы наблюдения в природных условиях, а также лабораторные опыты. Пожалуй, наиболее слабое место в изучении сообществ - практическая невозможность применить экспериментальные методы к столь сложным объектам. Именно поэтому наше понимание устройства сообществ в значительной мере основывается на тех данных, которые получают при изучении отдельных популяций составляющих сообщество видов. Смена среды обитания. В течение своего жизненного цикла особи одного вида могут менять среду обитания, входя в совершенно разные сообщества. Подобное явление наблюдается у многих насекомых, личинки которых живут, например, в воде, а взрослые особи перебираются в воздушную среду. Паразиты, меняющие в ходе развития хозяев или переносчиков, на разных его этапах тоже оказываются компонентами совершенно разных сообществ. Таковы, например, печеночные сосальщики, переходящие от водных моллюсков к обитающим на суше млекопитающим и птицам, или малярийный плазмодий - распространяемый комарами возбудитель малярии у человека и ряда позвоночных животных. Многие виды животных принадлежат к разным биологическим сообществам в зависимости от времени года, приспосабливаясь таким образом к сезонным изменениям климата. Самые поразительные примеры подобного рода - сезонные перелеты птиц, а также миграции некоторых млекопитающих. Территория, т.е. участок пространства, активно используемый животным и охраняемый им от вторжений других особей, играет важную роль в регуляции отношений между особями большинства изученных птиц и млекопитающих. У некоторых животных (например, славок или больших синиц) каждый самец господствует на территории с четко определенными границами и не допускает на нее конкурентов. В других случаях (например, у изученных К.Карпентером в Панаме обезьян ревунов) участок принадлежит группе особей, иногда довольно большой, которая охраняет его от вторжения других аналогичных групп или отдельных особей того же вида. Как полагают многие экологи, фактором, лимитирующим размеры популяций, чаще всего является именно доступность подходящей территории, а не непосредственно нехватка пищи. С позиций распространения вида инстинкт охраны территории очень важен, так как в конечном итоге позволяет животным более равномерно заселять определенное пространство и эффективнее его использовать, поддерживая оптимальную плотность популяции. Зимняя спячка. Зимняя и летняя спячки также имеют непосредственное отношение к экологии видов, так как члены одного сообщества могут демонстрировать совершенно разные способы переживания неблагоприятных периодов года. Спячкой называют особое физиологическое состояние организма, при котором многие обычные его функции выключаются или крайне замедляются, что позволяет животному долгое время находиться в состоянии полного покоя. Попытка точно определить понятие зимней спячки обычно приводит к чрезвычайно громоздкой и неудобной формулировке, потому что на самом деле есть множество способов, с помощью которых животные могут пережить трудный зимний период. Например, едва ли можно говорить о настоящей зимней спячке медведей, поскольку температура тела у них в этот период практически не снижается. Состояние полного оцепенения у американского лесного сурка, зимний сон медведя, сезонная смена меха и изменения в поведении зайцев - все это примеры, иллюстрирующие разные способы решения одной и той же проблемы, а именно приспособления к сезонным циклам. Как еще один такой способ можно рассматривать сезонную миграцию животных в районы с более благоприятным климатом. Исследованием механизмов зимней спячки занимаются главным образом физиологи, поскольку это требует лабораторных исследований находящегося в спячке животного, а также прямых экспериментов по выявлению факторов, определяющих начало и окончание зимнего покоя. Наши представления об этих механизмах далеко не полны - возможно, по той причине, что сама проблема находится на периферии физиологии и экологии и изучается недостаточно. Существуют различные теории, объясняющие механизмы наступления спячки, ее протекания и выхода из спячки, причем не исключено, что факторы, контролирующие эти процессы, у разных видов - разные. Наиболее важную роль играют изменения температуры, условий питания, обеспеченности животного жировыми запасами, а также длина светового дня. Если теплокровные животные могут впадать или не впадать в спячку, то холоднокровные, например насекомые в условиях умеренных широт, неизбежно должны находиться в состоянии покоя зимой, так как нормальные метаболические процессы просто не могут протекать при столь низких температурах. Большинство видов насекомых переживают зиму на стадии яиц. Впрочем, и у многих других животных яйцо является именно той стадией жизненного цикла, которая наилучшим образом приспособлена к задержке развития. То же самое можно сказать о семенах и спорах растений. В определенном смысле растения напоминают холоднокровных животных: из-за низких температур нормальный метаболизм этих организмов зимой невозможен. Кроме того, растения очень чувствительны к потерям влаги в процессе транспирации, а зима оказывается периодом засухи, поскольку вода в жидком состоянии в это время года в умеренных широтах обычно недоступна. В ходе эволюции многолетние растения адаптировались к смене сезонов, сбрасывая на зиму листья и образуя хорошо защищенные почки, находящиеся в состоянии покоя. Любопытно, что сохранение растений в умеренном климате зимой, а в тропиках в сухой и жаркий сезон обеспечивается в сущности одними и теми же механизмами. Летняя спячка (эстивация). Так называемая диапауза (временная остановка развития), наблюдаемая у насекомых и других беспозвоночных иногда без видимой связи с изменениями факторов внешней среды, давно служит предметом исследований экологов и физиологов. Как частный случай диапаузы можно рассматривать и эстивацию (летнюю спячку), служащую для переживания жары и засухи. Эстивация очень распространена среди насекомых, особенно у обитающих в тропиках. Подобно зимней диапаузе, летняя чаще всего наблюдается на стадии яиц, хотя в некоторых случаях к этому состоянию адаптированы личинки и даже взрослые особи. См. также <<СПЯЧКА>>. Распространение. Изучение географического распространения животных и растений тоже входит в сферу интересов экологии. Традиционная зоогеография отличается от экологии тем, что опирается прежде всего на данные геологической истории Земли и уделяет особое внимание распределению крупных таксономических групп по основным биогеографическим регионам. В ряде случаев такой подход совершенно необходим. Так, не зная истории континентов, невозможно понять, почему в настоящее время сумчатые млекопитающие встречаются только в Австралии и Америке. Однако современные границы распространения видов зависят почти исключительно от экологических факторов. Чтобы установить причины того или иного распространения отдельных видов или целых сообществ, необходимо выявить основные лимитирующие факторы. Например, северная граница встречаемости какого-либо вида насекомых в Северном полушарии нередко определяется тем, есть ли у данного вида механизм переживания продолжительной холодной зимы. Насекомые, не способные впадать в диапаузу на зимний период, вынуждены обитать только в тех областях, где климат позволяет сохранять активность в течение всего года. Географическое распространение растений определяется главным образом основными климатическими зонами и характером почв. См. также <<ФИТОГЕОГРАФИЯ>>. ДИНАМИКА ПОПУЛЯЦИЙ Часто используемое в экологической литературе выражение "природное равновесие" означает состояние сбалансированности (динамического равновесия), характерное для большинства популяций в сообществе; было бы совершенно неправильно понимать в этом случае равновесие как статическое состояние. Изучение колебаний численности животных - важнейшая область экологии, оказывающая влияние на такие казалось бы далекие сферы науки и деятельности, как генетика, сельское хозяйство и медицина. Сезонные и циклические (охватывающие, как правило, несколько лет) колебания численности уже давно интересовали натуралистов, которые пытались установить корреляции между наблюдаемыми популяционными процессами и различными климатическими факторами. В практическом отношении данная проблема очень важна: от ее решения зависят прогнозы массового размножения вредных насекомых или вспышек эпидемий. Совершенно независимо специалисты, изучающие механизмы естественного отбора, стали интересоваться математическим описанием распространения в популяции новых генетических вариантов организмов. Чтобы провести соответствующие расчеты, необходимо было иметь данные о действительной плотности популяций и о том, насколько быстро она изменяется. Скорость, с которой идет распространение нового генетического варианта, очевидно, будет разной в зависимости от того, возрастает, сокращается или остается стабильной численность популяции в данный период. Генетики обнаружили, что распространение генов в популяции может носить характер правильных циклических колебаний. В целом изучение динамики численности животных чрезвычайно важно для решения самых разных биологических проблем. Динамика популяций растений изучена в меньшей степени, может быть, в связи с относительной стабильностью их распространения. Биотический потенциал. При изучении динамики популяций широко используется такое важное понятие, как "биотический потенциал", т.е. характерная для данного вида скорость размножения (на величину которой влияют соотношение полов, количество потомков на одну самку, а также число поколений в единицу времени). Биотический потенциал многих организмов, прежде всего наиболее мелких, огромен, и если бы ничто не сдерживало рост их популяций, то они чрезвычайно быстро заселили бы собой всю Землю. Численность любой существующей популяции может быть представлена как отношение биотического потенциала к сопротивлению среды, т.е. к сумме всех факторов, тормозящих рост численности данного вида. Поскольку реальные популяции растений и животных более или менее стабильны во времени, сопротивление среды по отношению к видам с высоким биотическим потенциалом должно быть достаточно сильным. Давление популяции. Биотический потенциал может быть охарактеризован также как своего рода "популяционное давление", противостоящее постоянному воздействию различных неблагоприятных факторов внешней среды. Если на какое-то время улучшаются погодные условия, ослабевает пресс основного хищника или происходят другие непредсказуемые изменения, способствующие развитию данной популяции, она демонстрирует стремительный рост (проявлениями которого служат нашествия саранчи или мышей, а иногда и снижение цен на мех какого-нибудь ставшего распространенным пушного зверя). Популяционные циклы. Численность мелких животных с малой продолжительностью жизни подвержена регулярным сезонным изменениям. Один вид может быть массовым весной, другой в начале лета, а третий еще позже, и таким образом в одном местообитании происходит сезонная сукцессия доминирующих форм. Подобные смены видов особенно характерны для планктонных сообществ, причем не только в морях, но и в озерах. Кроме того, численность вида может сильно колебаться от года к году. У крупных млекопитающих циклические изменения численности охватывают более продолжительный период, и для их оценки исследователи нередко используют различные косвенные данные, включая статистику заготовки пушнины. Например, у леммингов и песцов наблюдаются четырехлетние циклы, причем они совпадают по обе стороны Атлантики. Подобные колебания численности, возможно, связаны с климатическими циклами. Определенную роль играет и то обстоятельство, что при большой плотности популяции легче возникают эпидемические заболевания, в результате которых численность снижается до минимума; в дальнейшем она начинает вновь постепенно увеличиваться, и цикл повторяется. Изменения численности популяций происходят и на протяжении геологических периодов времени по мере того, как одни виды постепенно уступают место другим. Непосредственно наблюдать такие процессы невозможно из-за их громадной временной протяженности, но что-то подобное можно увидеть в тех случаях, когда из-за человеческой деятельности, сравнимой по эффекту с геологическими явлениями, стремительно исчезают одни виды или интродуцируются новые виды в те области, где их раньше не было. Именно так обстояло дело с кроликами, завезенными в Австралию, европейскими крысами и мышами, завезенными в Америку, а также со многими вредителями растений, распространившимися в разных частях света. Палеоэкология. Некоторые ископаемые формы встречаются настолько часто, что могут быть использованы для реконструкции условий среды и структуры сообществ в прошлые геологические эпохи. Особую ценность для такой реконструкции представляют те случаи, когда отложения целиком образованы остатками организмов или содержат четко маркированные (например, пыльцой растений или отпечатками их листьев) слои. Исследования подобного рода, проводимые в первую очередь ботаниками, входят в задачу палеоэкологии. ПРИКЛАДНЫЕ АСПЕКТЫ Экология - наука, имеющая разнообразное практическое применение. Очевидно, что экологический подход необходим для научно обоснованного ведения сельского хозяйства. Например, чтобы эффективно бороться с вредителями сельскохозяйственных культур и правильно выбрать момент для применения инсектицидов, фунгицидов или каких-либо других химических препаратов, нужно хорошо знать жизненные циклы соответствующих видов организмов. Экологичными могут быть определенные сельскохозяйственные приемы и методы. К ним можно отнести передвижение сроков посева и уборки урожая, способствующие созданию неблагоприятных условий для вредителей, или ограничение численности последних путем интродукции специфических паразитов и хищников. Принципы экологии приложимы к исследованию климата и почв, необходимых для различных сельскохозяйственных культур, к организации разведения животных в тех или иных климатических условиях, а также к разработке рациональных севооборотов и поддержанию определенного уровня разнообразия агроценозов. Изучение с экологической точки зрения заболеваний человека, животных или растений составляет основной предмет эпидемиологии. Этой наукой разработаны системы мер, ограничивающих распространение таких болезней, как малярия, тиф, чума, желтая лихорадка и сонная болезнь. Подобные меры обычно включают борьбу с насекомыми-переносчиками заболеваний. Как и в случае с сельскохозяйственными вредителями, эта борьба должна основываться на хорошем знании экологии соответствующих организмов. Связь с экологией совершенно очевидна в таких областях деятельности человека, как рыболовство, лесное и охотничье хозяйство, а также охрана и рекультивация земель. Работающие в этих сферах специалисты обычно получают определенное экологическое образование и широко используют экологическую терминологию в своих статьях и книгах. См. также <<ОКРУЖАЮЩЕЙ СРЕДЫ ДЕГРАДАЦИЯ>>. ЛИТЕРАТУРА Небел Б. Наука об окружающей среде. Как устроен мир, тт. 1-2. М., 1993
Медицинская энциклопедия
I
Экология (греч. oikos дом, место обитания + logos учение)
До середины 20 в. термин «экология» трактовался однозначно в том виде, как его предложил в 1866 г. Геккель (Е. Haeckel), «общая наука об отношениях организмов к окружающей среде». Экология рассматривалась как сугубо биологическая наука об организации и функционировании надорганизменных систем различных уровней: популяций, биоценозов, биогеоценозов и биосферы. В последующем из-за резкого ухудшения состояния окружающей среды интерес к экологии возрос и одновременно появилось ее более широкое толкование. В качестве важнейшего раздела Э. стали рассматривать экологию человека (демоэкологию, антропоэкологию — науку, направленную на познание закономерностей взаимодействия человеческих общностей с окружающими их природными, социальными, производственными и бытовыми факторами). Каждая общность людей взаимодействует с населением, частью которого она является (население города — часть населения региона, население региона — часть населения страны и т.д.), с природными, социально-экономическими и производственными условиями. Все усиливающееся влияние на человека отказывает загрязнение и деградация окружающей среды. При этом все элементы внешнего для человеческой общности окружения в свою очередь взаимодействуют между собой. Изменения отдельных элементов и всей совокупности факторов внешней среды приводят к изменению основных свойств общности людей — уровня здоровья, демографического поведения, уровня культуры, предпочтений, отдаваемых тем или иным профессиональным занятиям, уровня образования.
«Экологизация» общественного сознания и современной науки привела к появлению целого ряда соответствующих научных направлений, в т.ч. геохимической экологии, радиационной экологии, экологии болезней, эколого-гигиенических исследований. Так, геохимическая экология изучает воздействие геохимической ситуации как на человека, так и на любые другие живые организмы; эндемические болезни, возникающие в результате этого воздействия, отмечаются не только у людей, но и у животных.
В равной мере это относится и к радиационной экологии, которая изучает миграцию естественных и искусственных радионуклидов в окружающей среде, их накопление (метаболизм) в растительных и животных объектах окружающей среды; изменения в животном и растительном мире, обусловленные радиацией. При резко повышенном радиационном фоне (<<Радиационный фон>>) и в случаях массированного техногенного загрязнения (например, на территориях вблизи Чернобыльской АЭС после аварии 1986 г.) наблюдаются экологические эффекты — прежде всего в виде учащения мутаций, а при чрезвычайно высоких дозах — проявления острого и хронического радиационного поражения — гибель отдельных особей или их заболевание (например, поражение части или всех побегов у деревьев), исчезновение отдельных видов, наиболее радиочувствительных или наиболее облученных. Так, на загрязненных территориях отмечалось снижение разнообразия видов насекомых — обитателей леса при сохранении общей численности особей на единицу площади. Радиационная экология близко примыкает к радиационной гигиене.
Совокупность медицинских направлений Э. человека сближается с географией медицинской (<<География медицинская>>). Различия между ними — четкая регионализация медико-географических исследований, наличие территориальных особенностей при изучении каждой медико-географической ситуации. Экологические исследования могут охватывать группы людей и вне связи с территорией, например рабочих определенного цеха или экипаж космического корабля.
См. также <<Охрана окружающей среды>>.

Библиогр.: Андерсон Дж. М. Экология и наука об окружающей среде; биосфера, экосистемы, человек, Л., 1985; Биология человека, под ред. В.В. Бунака, с. 472, М., 1979; Географические аспекты экологии человека, под ред. А.Д. Лебедева, М., 1975; Гиренюк Ф.И. Экология, цивилизация, ноосфера, М., 1987; Казначеев В.П. Очерки теории и практики экологии человека, М., 1983; Социальные проблемы экологии и современность, М., 1978; Экологические очерки о природе и человеке, под ред. Б Гржимека, М., 1988; Экология человека, под ред. В.П. Казначеева и В.С. Преображенского, М., 1988.
II
Экология (греч. oikos дом, место обитания + logos учение)
наука о взаимоотношениях организмов друг с другом и с окружающей средой.
Экология геохимическая — раздел Э., изучающий взаимодействие организмов и их сообществ с геохимической средой в биосфере, разрабатывающий нормативы минерального и микроэлементного питания, методы предупреждения и лечения некоторых эндемических болезней.
Экология радиационная (син.: биогеоценология радиационная, радиоэкология) — раздел Э., изучающий отношение живых организмов, их популяций и сообществ к воздействию ионизирующего излучения, характерного для среды обитания.
Идеографический словарь
^ связь
^ живая природа, и, среда
экология - наука об отношениях живого и неживого мира;
наука о взаимосвязи живых организмов с окружающей средой.
экогенез.
биоклимат. экоклимат.
биомасса.
биотические факторы среды.
аэрация - поступление воздуха в к-л. среду.
симбиоз. симбионт.
мутуализм.
комменсализм.
трофобиоз.
микориза.
трофоллаксис.
биоиндикаторы.
аутоэкология. синэкология.
биогеохимия.
v охрана живой природы
Орфографический словарь Лопатина
экол`огия, экол`огия, -и
Словарь Ушакова
ЭКОЛ’ОГИЯ, экологии, мн. нет, ·жен. (от ·греч. oikos - дом и logos - учение) (биол.). Отдел биологии, изучающий взаимоотношения организмов и окружающей среды.
Толковый словарь Ефремовой
[экология]
ж.
1) Научная дисциплина, изучающая взаимоотношения животных, растений, микроорганизмов между собою и с окружающей их средой.
2) Состояние организмов, населяющих территорию, их отношение друг к другу и к окружающей среде.
Социологический Энциклопедичечкий Словарь
ЭКОЛОГИЯ (от греч. oifcos - дом, жилище, местопребывание и logos - слово, учение) - англ. ecology; нем. Okologie. Наука, изучающая взаимодействие человеческого общества с окружающей природной средой, об условиях поддержания равновесия в этом процессе.
Новый философский словарь
(греч. oikos - жилище, местопребывание и logos - учение)
учение о взаимоотношении организмов с окружающей средой. Понятие Э. впервые было использовано в 1866 немецким биологом Геккелем в работе "Всеобщая морфология организмов" для обозначения отрасли биологии, которая изучала воздействие на организм неорганической и биотической среды. При этом Геккель исходил из установки: "Э. - наука, изучающая все сложные взаимосвязи и взаимоотношения в природе". Впоследствии организмоцентриче-ская биоэкология (животных и растений) разделилась на аутоэкологию (видов) и синэкологию (сообществ или биоценозов). Исторически известно, что еще с древних времен экологические воззрения делились на два направления: 1) исследовавшие природу без учета воздействия человека, а самого человека рассматривая как органическое образование наряду с растительным и животным миром; 2) трактовавшие человеческую деятельность как основной фактор динамики природных процессов. Интенсивные исследования в области Э. изменили ее статус как естественной науки: оказалось уже недостаточно изучать связи между живыми существами и средой, исключая при этом человека. Пришло осознание, что доминирующими факторами изменяющейся биосферы являются антропогенные воздействия. Э. прошла определенные исторические этапы от протоэкологии к естественной истории (традиционной Э. животных и растений), а затем к становлению неклассической (с появлением понятия "экосистема" в 1985 - Тенсли) и постнеклассической Э. (идея вторжения социального человека в экосистемы). Выход за рамки традиционной оппозиции "организм - среда", характерной для классической Э., способствовал изучению новой оппозиции "естественное - искусственное". В результате появляется понятие "социальная Э.", которое было предложено в 20-х 20 в. Р. Парком и Э. Берджессом. Социальная Э. стала изучать структуру функционирования объектов особого типа, т.е. объектов "второй", искусственной среды обитания человека. С развитием социума роль искусственной среды обитания постоянно возрастает. Преобразующая технология вторгается в естественные процессы и видоизменяет их в соответствии с потребностями человека, замещая естественные элементы среды искусственными. Такой техницизм основывается на антропоцентристском взгляде на природу как на нечто, подвластное воле человека. К тому же в 20 в. под влиянием генетики формируются представления об организмах как запрограммированных системах, поддающихся перепрограммированию при соответствующих научных и технических методиках. К концу 20 ст. искусственно созданная человеком техносфера стала сопоставима с биосферой Земли: так, уже известно, что масса всех искусственно созданных человеком предметов и живых организмов (техномасса) значительно превосходит естественную биомассу. Подобная деятельность человека обострила экологические проблемы - они приобрели глобальное измерение. Совокупная человеческая деятельность способна теперь коренным образом подорвать природное равновесие биосферы и тем самым привести к гибели человеческую цивилизацию. Глобальные проблемы современности и новые социокультурные детерминации изменяют те парадиг-мальные установки, которые традиционно конституировали и определяли содержание картины экологической реальности. Решение проблем экологической безопасности сегодня - на пороге третьего тысячелетия - показывает, что в качестве доминирующих парадигм должны быть избраны такие, например, как "чувство глобальности" (А. Печчеи), "витальная ценность" (Ортега-и-Гассет) и другие элементы нового гуманизма, составляющие контекст современного цивилиза-ционного процесса. Именно они призваны уже в новых социальных реалиях сформировать системное экологическое мышление и иерархию функционирующих в обществе ценностей - регуляторов целенаправленной индивидуальной и массовой деятельности. В развитии социума подобные ценностные установки определяют уровень экологической культуры, когда субъект на основе выбора соответствующих парадигм способен создавать приоритетные социокультурные программы, обеспечивающие нормальное развитие системы "природа-общество", ее закономерную коэволюцию, правильно оценивать, моделировать и решать возникающие экологические проблемы. (См. также: Глобальные проблемы, Постиндустриальное общество).
А.В. Барковская
Философский словарь
(греч. oikos — дом, жилище, местопребывание и logos — слово, знание, наука) — наука о взаимоотношениях организмов со средой их обитания. Под организмом в данном случае понимается все живое на Земле, обладающее способностью обменивать вещества и воспроизводить себе подобное, 'а средой обитания — все то, что окружает эти организмы, все, с чем они соприкасаются и взаимодействуют. Термин “Э.” впервые употребил в 1858 амер. писатель Торо. Однако научное содержание этому понятию придал в 1866 Геккель, определив Э. как “науку об экономии природы”. Интенсивное развитие Э. получила в 20 в., перестав уже быть только биологической дисциплиной. Ее объектами стали популяции организмов, виды, сообщества, экосистемы, человек и биосфера в целом. В результате возник ряд тесно связанных между собой самостоятельных научных дисциплин и направлений: общая Э., глобальная Э., эволюционная Э., Э. животных, Э. растений, космическая, медицинская, сельскохозяйственная и т. п. Э. В последние годы идет активный процесс становления социальной экологии.
Философский энциклопедический словарь
ЭКОЛОГИЯ (от греч. 6ikos – жилище, местопребывание и logos – понятие, учение) – наука, изучающая взаимоотношения организмов друг с другом и со средой их обитания. Впервые термин «экология» ввел в 1866 нем. биолог Эрнст Геккель. Любой вид организмов в ходе эволюции приспосабливается к условиям своего бытия, стремясь достичь во всех связях с неорганической природой и др. формами жизни важных преимуществ перед иными видами существ, живущих в тех же условиях. В результате тысячелетней эволюции образовалась динамическая равновесная система в живой природе – биосфера. С развитием промышленно-практической и социальной деятельности человека увеличились масштабы его вмешательства в естественно сложившиеся связи природной среды, последствия которого часто наносят непоправимый вред биосфере, нарушают баланс естественных процессов (отравление воздушной и водной среды, почвенного покрова, гибель лесов, наступление пустынь и т. д. и т. п.). Все это ставит перед экологией задачу определения допустимых границ воздействия на природу, т. к. существование ее в качестве равновесной системы является непременным условием существования человечества. Задача экологии как науки – искать и предлагать такие способы воздействия на окружающую среду, которые бы не только предотвратили катастрофические последствия, но и позволили существенно улучшить биологические и социальные условия развития человека и всего живого на Земле.
Бренан - Словарь научной грамотности
Наука о связях между живыми организмами и окружающей средой. Изучение взаимосвязей различных форм жизни показало, что все виды живых организмов в большой степени взаимозависимы. Среди очевидных примеров этого - пчелы и растения. Пчелы опыляют растения и в свою очередь питаются их продуктами. Таким образом, эти два вида организмов взаимосвязаны. Чем больше человечество узнает о зачастую неожиданных последствиях своей деятельности, тем более необходимым становится изучение экологии. См. <<экосистема>>.
Научнотехнический Энциклопедический Словарь
ЭКОЛОГИЯ, биологическая дисциплина, изучающая взаимоотношения между организмами и ими с ОКРУЖАЮЩЕЙ СРЕДОЙ. Термин был введен в употребление Эрнстом ГЕККЕЛЕМ в 1866 г. Экологи изучают популяции (группы одинаковых организмов), сообщества (комплексы различных организмов, обитающих в одной и той же среде) и ЭКОСИСТЕМЫ (комплекс сообществ и их физического окружения). Максимальный размер популяции, которая может просуществовать за счет ресурсов данной среды, называется пределом плотности. Роль, которую играет данный вид в сообществе, называется экологической нишей. Заполнение самыми разнообразными биологическими видами их экологических ниш способствует поддержанию естественных циклов БИОСФЕРЫ - УГЛЕРОДНОГО, АЗОТНОГО и КИСЛОРОДНОГО ЦИКЛОВ, КРУГОВОРОТА ВОДЫ. Разнообразие видов приводит также к созданию устойчивых, климаксных сообществ. Хорошо развитое и обширное КЛИМАКСНОЕ СООБЩЕСТВО называют БИОМОМ. Прикладная экология занимается практическими мерами по сохранению и использованию природных ресурсов и охране окружающей среды.
Энциклопедия афоризмов
ЭКОЛОГИЯ, ОХРАНА СРЕДЫ
см.также ПРИРОДА
Мысли глобально, действуй локально.
•Экологический лозунг
Осторожно, нас окружает среда!
•Григорий Яблонский
Дорога цивилизации вымощена консервными банками.
•Альберто Моравиа
Четвертая часть территории Америки покрыта лесами, а остальная часть - бутылками из-под пива
•Автор неизветен
Велика Россия, а ступить некуда.
•Анатолий Рас
Христос ходил по воде. Если загрязнение рек не прекратится, скоро ходить по воде сможет каждый.
•Автор неизветен
Если бы снежный человек был, его бы давным-давно не было.
•Александр Жуков
Чем больше дров, тем дальше лес.
•Александр Жуков
Экологи полагают, что журавль в небе лучше, чем синица в руках.
•Стэнли Пирсон
Не потому ли на Земле все меньше аистов, что все больше людей?
•Юрий Скрылев
Мир достаточно велик, чтобы удовлетворить нужды любого человека, но слишком мал, чтобы удовлетворить людскую жадность.
•Махатма Ганди
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: ЭКОЛОГИЯ


будет выглядеть так: Что такое ЭКОЛОГИЯ