Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

АРХЕОАСТРОНОМИЯ

Мультимедийная энциклопедия
Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад. Состоящие из массивных каменных глыб размером до 20 м и весом до 100 т каждая, эти постройки являются крупнейшим строительным и организационным достижением людей бронзового века. Наиболее известен Стонхендж на равнине Солсбери в Южной Англии. Круговой ров 91 м в диаметре обрамляет два концентрических круга из вертикально стоящих камней с еще двумя концентрическими постройками внутри. В центре - алтарный камень. В основном это сооружение было создано между 2000 и 1500 до н.э. Археологический анализ показал, что это место использовалось и достраивалось не менее 1500 лет. В 18 в. ученые обнаружили, что наиболее заметные камни Стонхенджа указывают направление на точку восхода Солнца в день летнего солнцестояния. Астроном Дж. Хокинс установил в 1963, что Стонхендж использовали как гигантский прибор для предсказания времени и места на небе определенных астрономических событий, в основном восходов и заходов Солнца, Луны и некоторых звезд. См. также <<СТОНХЕНДЖ>>. ВАВИЛОНСКАЯ, ШУМЕРСКАЯ И ЕГИПЕТСКАЯ АСТРОНОМИЯ Доисторические люди, несомненно, использовали элементы практической астрономии для расчета сезонов и моментов различных астрономических событий. Антропологи зафиксировали множество таких обычаев и приемов даже у народов, не имевших письменности. Благодаря изобретению письменности сохранилось множество документальных свидетельств развития астрономии у великих речных цивилизаций, особенно Междуречья и Египта. Такой уровень развития астрономии достигнут, безусловно, благодаря сложной культуре этих цивилизаций. На клинописных табличках, сделанных около 1800 до н.э., сохранились записи моментов восхода Луны и ее первого появления в новолуние. Как и многие другие народы, вавилоняне вели лунный календарь и начинали отсчет дней месяца с первого появления лунного серпа в лучах вечерней зари. Его легко было заметить в ясную погоду, но предсказать наперед, в какой именно вечер появится молодая Луна, было непростой задачей. Этот прогноз зависит не только от таких очевидных факторов, как продолжительность месяца, но и от весьма сложного сезонного изменения угла между эклиптикой и западной частью горизонта. Одним из достижений шумерской, а затем вавилонской астрономии была разработка арифметического алгоритма для предсказания этого важнейшего явления. Венера - заметный объект, часто наблюдаемый в сумерки на западе. Поэтому не удивительно, что вечерний заход и утренний восход Венеры также отмечались, а затем вычислялись и предсказывались. В самых ранних из сохранившихся табличек записаны также восходы, заходы и кульминации некоторых ярких звезд. Вавилоняне уделяли особое внимание звездам Зодиака - полосы, проходящей вдоль видимого пути Солнца (эклиптики), в пределах которой перемещаются планеты. Они разделили Зодиак на 12 равных частей, назвав каждую из них именем ближайшего созвездия, и стали использовать угловые единицы, делившие небо на 360 частей (в основе системы счисления вавилонян лежало число 60). См. также <<СОЗВЕЗДИЕ>>; <<ЗОДИАК>>. К 6 в н.э. вавилонская астрономия достигла высокого уровня. Была полностью решена проблема вычисления месяца и года, весьма осложненная тем обстоятельством, что периоды орбитального движения Луны и Земли не кратны друг другу, и поэтому лунный и солнечный календари не удается согласовать надолго. См. также <<КАЛЕНДАРЬ>>. Другими достижениями вавилонских математиков были предвычисления сезонного изменения продолжительности дня, положения и фаз Луны, положения ярких планет и даже наступления лунных затмений. Вавилонские вычисления основывались не на какой-либо теории истинного положения небесных тел, а лишь на регулярности их видимых перемещений. Таким образом, вавилонские теории были полностью арифметическими: находились повторяющиеся последовательности в записях чисел и делались попытки продолжить их в будущее. Эти теории примитивнее развитых позже греками геометрических теорий, хотя и не уступают им в точности. Египетская цивилизация существовала одновременно с вавилонской и достигла многого в области культуры, но к астрономии это не относилось. Вначале египтяне использовали лунный календарь, но вскоре отказались от него в пользу более простого, разделив год на 365 дней (12 месяцев по 30 дней плюс 5 праздничных дней в конце) и позволив солнечному календарю (т.е. сезонам года) расходиться с лунным календарем на четверть суток в год. Египтяне отмечали моменты восхода и захода ярких звезд, используя их для счета времени. Они также были отменными топографами: их пирамиды и прочие монументы изумительно точно (до нескольких угловых минут) ориентированы по сторонам света. Некоторые вентиляционные коридоры в пирамидах, вероятно, были ориентированы в точки верхней кульминации определенных звезд и могли служить визирными трубами. ЭЛЛИНИСТИЧЕСКАЯ АСТРОНОМИЯ Расцвет греческой (эллинистической) цивилизации в пору угасания вавилонской и египетской отмечен крупными изменениями в практической и теоретической астрономии. Греки переняли многие знания и учения предшествовавших цивилизаций, но изменили и систематизировали их в соответствии с новым взглядом на мир. Основанная на философии и космологии Платона и Аристотеля, имеющая теоретической базой геометрию греческих математиков, объединившая множество новых, зачастую более точных данных, астрономия Древней Греции стала развитой наблюдательной и теоретической дисциплиной и приобрела тот вид, который сохранился вплоть до эпохи Возрождения. Солнце (D) и планеты - Меркурий (B), Венера (C), Марс (E), Юпитер (F) и Сатурн (G) - движутся равномерно по окружностям X, называемым эпициклами, с центрами Y, также равномерно движущимися по большим окружностям, называемым деферентами, в центре которых находится Земля. Поскольку Меркурий и Венера никогда не удаляются от Солнца на большой угол, центры эпициклов этих планет и Солнца всегда лежат на одной прямой. Греки развили практические методы астрономии для мореплавания, отраженные в поэмах Гомера 9 и 8 вв. до н.э. (в нескольких местах этих поэм описаны приемы определения месяца и года, ведения календаря и счета времени). Греки поддерживали тесные торговые контакты с соседними странами, и когда у них начался расцвет философии и естествознания (часто именуемый "греческим чудом"), они смогли объединить достижения разных народов. Открытие прецессии. Около 430 до н.э. было обнаружено, что продолжительность сезонов не одинакова. Для определения дат равноденствий греки отмечали дни, когда Солнце садится в точке запада. Вместо того, чтобы выбирать ближайшую звезду, от которой начинать деление Зодиака на 12 знаков (как это делали вавилоняне), они выбрали точку неба, через которую проходит Солнце в день весеннего равноденствия, пересекая небесный экватор. В то время эта точка находилась в созвездии Овна и поэтому была названа "первой точкой Овна". В течение нескольких столетий никаких видимых изменений не отмечалось, но затем наблюдатели заметили, что эта точка смещается на фоне звезд, и открыли таким образом предварение равноденствия - прецессию. См. также <<НЕБЕСНАЯ СФЕРА>>; <<ЗЕМЛЯ>>. Эфирные сферы и круговое движение. Используя греческие и старые вавилонские наблюдения, Евдокс Книдский (ок. 406 - ок. 347 до н.э.) попытался создать геометрическую модель небесных явлений. Он представлял Землю покоящейся в центре, вокруг которого вращается несколько концентрических прозрачных сфер. На каждой из них зафиксирована планета (в число которых тогда включали Солнце и Луну). Некоторые из сфер несли на себе другие сферы с осью, смещенной на некоторый угол. На самой внешней сфере располагались все звезды, поскольку их взаимное расположение никогда не менялось. Каждая из сфер вращалась с постоянной скоростью (важное философское требование): например, каждая звезда совершала оборот за сутки. Подбирая скорости вращения, расположение сфер и углы взаимного наклона их осей, Евдокс мог воспроизводить основные небесные явления. Ему удалось объяснить даже такие сложные и загадочные движения, как обратные петли Марса, Юпитера и Сатурна на фоне звезд и колебания Меркурия и Венеры около Солнца. Позже Аристотель (ок. 384-322 до н.э.) включил эту теорию в свое учение, количество сфер возросло и превысило 50, но попытки Каллиппа (род. ок. 370 до н.э.) и других сделать теорию более точно соответствующей наблюдениям не дали результата. Вскоре от этой теории как от расчетной схемы отказались, но она сохранила важное значение как космологическая модель. применена древними греками для измерения разностей эклиптических широт и долгот двух небесных объектов. Обобщенная космологическая система Аристотеля, доминировавшая на Западе около 2000 лет, утверждала одни физические принципы для подлунной сферы, а другие - для небесной. Четыре элемента подлунной сферы - земля, вода, воздух и огонь - характеризовались естественным прямолинейным движением либо к занятому Землей центру Вселенной (тяжелые), либо от него (легкие). В отличие от этого эфир, единственный элемент небесной сферы, обладал естественным круговым движением. Все научные теории о поведении вещества - то, что сейчас мы называем физикой, химией и даже геологией, - произошли из аристотелевой системы естественных движений и естественных мест. Согласно Аристотелю, планеты прикреплены к эфирным сферам Евдокса, круговое движение которых следует из их небесной природы. Гиппарх. Гиппарх с о. Родос (ранее 161 - ок. 126 до н.э.) внес важный вклад в развитие астрономии. Он провел много точных наблюдений и сравнил их с результатами вавилонских и других астрономов. Составив новый каталог положений ярких звезд и сравнив его с предшествовавшими каталогами, он заметил, что эклиптические долготы всех звезд смещаются примерно на градус в столетие, тогда как широты остаются неизменными. Отсюда он заключил, что положение Солнца относительно звезд в моменты равноденствий (и солнцестояний) смещается, или прецессирует, в обратном направлении. Наиболее важным вкладом Гиппарха стало развитие планетной теории. Тщательно измерив неравенство продолжительности сезонов, он понял, что Солнце перемещается по небу в течение года с переменной скоростью. Поскольку, согласно космологии Платона и Аристотеля, движение Солнца должно быть круговым и равномерным, он заключил, что неравномерность солнечного движения лишь кажущаяся. Расположив Землю чуть в стороне от центра сферы, несущей Солнце, он получил наблюдаемое неравномерное движение светила при истинном равномерном. Проблему сложного движения Луны Гиппарх разрешил несколько иным путем. Вместо того, чтобы располагать центр лунного движения в центре Земли или чуть в стороне от него, он заставил Луну обращаться по небольшой окружности - эпициклу - центр которой движется вокруг центра Земли. См. также <<ГИППАРХ>>. Птолемей. Греческая геометрическая астрономия достигла кульминации в Александрии в работах Птолемея (ок. 100 - ок. 170). Его сложный геометрический аппарат и математические методы дополнили вычислениями космологию Аристотеля и восторжествовали над конкурирующими методами и системами. Величайшая работа Птолемея Альмагест - это трактат по математическим методам вычисления положений планет на небесной сфере. Опираясь на глубокую традицию греческой геометрии, Птолемей преобразовал космологию Аристотеля в математическую модель Вселенной. Для каждой планеты он разработал свою теорию, состоящую из разнообразных геометрических приемов. Планета, по Птолемею, равномерно обращается вокруг центра эпицикла, который, в свою очередь, движется по кругу деферента, в центре которого (или рядом с ним) находится Земля. Эти движения планет, казавшиеся тогда не связанными друг с другом, позже нашли объяснение как движения с переменной скоростью по эллиптическим орбитам вокруг Солнца под действием его притяжения. в меридиане. Даже при низкой точности глазомерных измерений 2 в. н.э. простой комбинации эпицикла и деферента было недостаточно. Поэтому Птолемей модифицировал теорию, нарушив этим канон Аристотеля. Во-первых, используя идею Гиппарха, он поместил Землю не в центре деферента. В случае Солнца эксцентрический деферент позволил ему вообще обойтись без эпицикла. Во- вторых, он предположил движение деферента равномерным не по отношению к его центру или даже к центру Земли, а по отношению к воображаемой точке, названной эквантом и расположенной симметрично положению Земли относительно центра деферента. Подбирая размер и наклон этих элементов, периоды обращения и смещение точек эксцентра и экванта, Птолемей мог объяснить наблюдаемое движение планет. Альмагест Птолемея - объемистый и сложный трактат по астрономии. В нем описаны приборы и методы проведения наблюдений, даны таблицы положения звезд и предвычисленных положений планет, детально объяснены различные теории планет и указано, как пользоваться ими для вычисления положений планет, подробно обсуждаются данные наблюдений и теории предшественников. Альмагест далеко превзошел все предшествующие астрономические трактаты, поэтому большинство из них перестали копировать, и со временем они оказались потеряны, за исключением небольших фрагментов или ссылок. См. также <<ОБСЕРВАТОРИЯ>>; <<ПТОЛЕМЕЙ Клавдий>>. Предсказание движений планет имело огромное значение. Во-первых, оно укрепляло веру в рациональное устройство мира. Эта заповедь Аристотеля, объединенная с теологией, воплотилась в "план Творца". На более практическом уровне математическая астрономия позволила рассчитывать календари, предсказывать затмения и, что важно, составлять гороскопы для государственных и личных нужд. Это последнее сохранило свою заметную, хотя и спорную роль даже после распространения на Западе христианства. См. также <<АСТРОЛОГИЯ>>; <<ЗАТМЕНИЯ>>. СРЕДНЕВЕКОВАЯ АСТРОНОМИЯ Технический прогресс в изготовлении приборов для измерений невооруженным глазом привел к созданию более точных таблиц движения планет, а развитие вычислительных методов позволило точнее определять теоретические значения. Однако при этом выяснилось, что согласие между теорией и наблюдениями не очень хорошее. Было немало споров о том, как выйти из этого положения, но основная схема Птолемея, представляющая движение планет вокруг Земли с помощью комбинации равномерно вращающихся окружностей, сохранилась вплоть до Возрождения. В Римской империи астрономия не развивалась. Хотя римляне достигли большого прогресса в политике, юриспруденции, риторике и технике, теорию и наблюдения в астрономии они почти не продвинули. После распада империи и нашествия варваров астрономия на Западе стала угасать. Она еще существовала в виде копий старых работ, но механическое переписывание сопровождалось множеством ошибок. Разработка календаря стала большой проблемой, и даже такое рутинное, но нужное дело, как определение основанных на лунном календаре дат религиозных праздников (например, Пасхи), было доступно лишь немногим образованным людям. Каталоги и рассчитанные Птолемеем таблицы сохранились, но все меньше и меньше людей понимало их и могло использовать. Те немногие, кто еще проводил наблюдения и фиксировал астрономические события, пользовались солнечными часами и простейшими приборами. См. также <<СОЛНЕЧНЫЕ ЧАСЫ>>. В то время как астрономия угасала в Европе после падения Рима, эта эллинистическая наука пустила мощные корни в соседних культурах Центральной Азии, а также достигла Индии. Были построены многочисленные обсерватории, крупнейшей из которых стала обсерватория Улугбека в Самарканде. Ученые Среднего Востока владели всеми астрономическими знаниями той эпохи, исправляли и дополняли методы и технику Птолемея. См. также <<ОБСЕРВАТОРИЯ>>. Даже после 12 в., когда некоторые работы Аристотеля были открыты заново и в Европе начались интеллектуально наполненные времена схоластики, астрономия оставалась в упадке. Тем не менее, популярными стали космологические темы, касающиеся общего строения и движения Вселенной. Основой этого периода средневековой мысли были сочинения Аристотеля, к которым теологи и ученые написали множество комментариев. Вместе с Библией и трудами отцов церкви работы Аристотеля стали основой обучения. Предметом пылких дискуссий стало устройство сфер Евдокса и физические принципы их движения, возможная множественность миров и даже природа Луны. Эти дискуссии подготовили образованный Запад к интеллектуальному взлету Возрождения, наступившему в 14 в., когда сохранившиеся в арабских странах античные знания хлынули в Европу. Наконец-то европейские астрономы смогли прочитать Птолемея, Аристотеля и других ученых древности в полном объеме и, что особенно важно, увидеть полную картину развития античной астрономии. ВОЗРОЖДЕНИЕ Коперник и гелиоцентризм. Н. Коперник (1473-1543), оказавшийся революционером в астрономии, поначалу работал в традиционном русле и почитал античное знание. Желая, тем не менее, упростить астрономические расчеты, ставшие чересчур сложными, он поместил Солнце в центр, сделал Землю планетой, а Луну - спутником Земли. При этом он пытался сохранить равномерное круговое движение и отказался от приемов, введенных Птолемеем и его последователями. представленной здесь в упрощенном виде, Солнце находится в центре, вокруг него обращаются Земля и другие планеты, а Луна как спутник обращается вокруг Земли. В действительности Коперник для объяснения лунного и планетных движений, подобно грекам, использовал эпициклы, но ему удалось обойтись без многих искусственных приемов, введенных Птолемеем и его последователями. В итоге возникло непримиримое противоречие между геоцентрической системой Птолемея и гелиоцентрической Коперника. Последняя воспринималась как искусственная вычислительная схема с точки зрения теологии и религиозных убеждений и с позиций физики той эпохи. С чисто математической точки зрения - какая из систем может точнее воспроизвести наблюдаемые на небе перемещения светил, - обе они были почти равноценны. Более того, возвращаясь к традиции Аристотеля, система Коперника вынуждена была использовать даже больше эпициклов, чем система Птолемея, и поэтому в определенном смысле была сложнее. См. также <<КОПЕРНИК Николай>>. Тихо Браге и изменчивость небес. Эксцентричный и колоритный датский астроном Т. Браге (1546-1601) занялся повышением точности наблюдений для сравнения между собой конкурирующих систем мироздания. Используя новые приемы, он довел измерения с помощью невооруженного глаза до невероятной точности почти в 1'. В 1585 при государственной поддержке он основал обсерваторию на острове Вен, где, создавая великолепные инструменты, он и его помощники с высокой точностью измеряли положения планет. Он надеялся использовать эти наблюдения для подтверждения собственной гибридной системы мироздания, согласно которой Земля находится в центре, Луна и Солнце обращаются вокруг нее, а остальные планеты движутся вокруг Солнца. Так Т. Браге пытался сохранить относительную простоту планетной системы Коперника, оставляя при этом Землю неподвижной. наблюдателей для измерения углового расстояния между двумя звездами. Не желая считать Землю планетой, Тихо, тем не менее, оказался первопроходцем в изучении новых небесных явлений. 11 ноября 1572 он заметил в созвездии Кассиопеи объект, сияющий ярче любой звезды или планеты. Этот объект постепенно терял яркость, став к декабрю как Юпитер, а в мае 1573 достигнув второй звездной величины. В высшей степени надежные наблюдения Т.Браге не выявили параллакса, хотя своими приборами он измерял параллаксы атмосферных явлений, таких, как метеоры. Значит, новое светило, которое он назвал по-латыни просто "nova", находится дальше сферы Луны, где-то на неизменных небесах. Пять лет спустя Тихо был поражен еще более изумительным небесным спектаклем: появилась комета, по яркости сравнимая с Венерой и с хвостом длиной в 45 диаметров Луны. Он наблюдал ее несколько недель и даже переопределил для этого положения опорных звезд, от которых измерял углы. Из этих наблюдений он заключил, что комета прошла от Земли на расстоянии, более чем в пять раз превышающем расстояние до Луны. Новое светило и комета доказали, что за пределом лунной сферы могут и действительно происходят перемены. Кометы, которые Аристотель считал атмосферными явлениями, теперь превратились в планеты. См. также <<БРАГЕ Тихо>>. Кеплер и разрушение круговых движений. В 1600, за год до своей смерти, живший теперь в Праге Т. Браге пригласил И. Кеплера (1571-1630), чтобы передать ему свое интеллектуальное наследство. До этого в сочинении "Тайна Вселенной" (Prodromus dissertationum mathematicarum continens mysterium cosmographicum, 1596) Кеплер пытался проверить с точки зрения неоплатонизма единство и необходимость принципов, лежащих в основе системы Коперника. Полностью доверяя высокоточным наблюдениям Тихо, Кеплер два года тщетно пытался подыскать наборы традиционных круговых движений. В случае Марса лучшие из его вариантов давали расхождение вычисленных и наблюдаемых положений планеты до восьми угловых минут (Коперник в свое время удовлетворился десятью минутами). Однако Кеплер упорно проводил утомительные вычисления, делал и исправлял ошибки, искал все новые и новые варианты. Наконец, с сожалением он отказался от окружностей и начал для описания орбиты Марса экспериментировать с овалами. Когда, наконец, в 1605 он использовал эллипс для описания орбиты Марса, все стало на свои места. Его Новая астрономия (Astronomia Nova, 1609) содержала два из трех утверждений, называемых теперь кеплеровскими законами движения планет, а именно, что орбита планеты есть эллипс, в одном из фокусов которого расположено Солнце, и что линия, соединяющая этот фокус с планетой, заметает равные площади за равное время. Эти два элегантных утверждения позволили покончить с громоздкими построениями Птолемея, Коперника и Тихо. Из них вытекало, что тела могут двигаться в космосе по орбитам, не будучи прикрепленными к сферам, эпициклам, деферентам и прочим носителям, что планеты могут ускоряться и замедляться по известному закону, не подчиняясь аристотелеву принципу равномерного кругового движения. Диктатура окружности была сломлена так же, как привилегированное положение и неподвижность Земли. Третий закон Кеплера, гласящий, что отношение квадратов орбитальных периодов любых двух планет или спутников равно отношению кубов их средних расстояний от центрального тела, был опубликован в его работе Гармония Мира (Harmonice mundi, 1619). Эти законы продемонстрировали глубокую рациональность Солнечной системы с ее эллиптическими орбитами и сгладили разочарование, вызванное отказом от аристотелева принципа равномерных круговых движений. Масштабы Солнечной системы и спутниковых систем планет теперь легко могли быть получены из наблюдений. Составленное Кеплером Краткое изложение коперниканской астрономии (Epitomes astronomiae Copernicanae, 1617-1621) включало полное описание законов Кеплера. Это Изложение стало дополнением к Рудольфовым таблицам (Tabulae Rudolphinae, 1627), в которых Кеплер привел практические методы и результаты вычисления положений планет. Таблицы, вычисленные по теории Кеплера, быстро вытеснили все другие, что привело к увяданию астрономии Птолемея. См. также <<КЕПЛЕР Иоганн>>; <<КЕПЛЕРА ЗАКОНЫ>>. Галилей, новая физика и телескоп. Произведенная Коперником революция в астрономии означала нечто большее, чем перемену положений Земли и Солнца и определение траекторий планет. Удаление Земли из центра мира, придание ей орбитального и вращательного движений, свободный полет планет в пространстве по некруговым траекториям - все это требовало совершенно новой физики, отличной от аристотелевой. В то время как Кеплер обеспечивал идеям Коперника важную теоретическую поддержку, его флорентийский знакомый и коллега Г. Галилей (1564-1642) делал это не только теоретически, но и практически. Галилей рано стал приверженцем коперниканства, он стремился найти физические доказательства гипотезы Коперника и установить новые физические принципы и законы, которые бы опровергли "очевидные" возражения против этой спорной теории. Исследования Галилея по физике падающих тел привели к математическому описанию действия гравитации вблизи поверхности Земли, а Кеплер в своих законах дал математическое описание действия гравитации на движущиеся по орбитам планеты. (Флоренция). Ниже, в центре виньетки, - разбитый объектив первого телескопа Галилея. На схеме внизу показано расположение линз в этой простой телескопической системе. Решающий вклад в утверждение идей Коперника Галилей внес с помощью телескопа. Первый раз Галилей взглянул на небо в свой только что сделанный телескоп в январе 1610. То, что он увидел, полностью разрушило представления Аристотеля о космосе, царившие в течение 20 веков. Телескоп показал, что поверхность Луны не гладкая и абсолютно сферическая, как думали философы в отношении Луны и других небесных тел. Напротив, она грубая, неровная, изобилующая впадинами и выпуклостями, такая же, как поверхность Земли с ее горными цепями и долинами. Весть об этих открытиях быстро разошлась среди образованной публики, вызывая восторг и восхищение. Когда Галилей направил свой телескоп на звезды, в особенности на Млечный Путь, он увидел мириады новых звезд, не известных ранее. Яркие планеты предстали маленькими дисками, тогда как звезды остались туманными точками, что указывало на их значительно большую удаленность, как и предполагал Коперник. На Марсе и Сатурне, которые располагались тогда на небе близко к Солнцу и были максимально удалены от Земли, не удалось заметить деталей. Зато Юпитер продемонстрировал поразительную и совершенно анти- аристотелевскую картину. Изучая его матовый диск в телескоп, Галилей заметил рядом четыре спутника, обращающихся вокруг самого Юпитера. Он даже смог определить, какой из спутников обращается ближе к Юпитеру, а какой - дальше, и приблизительно установил их периоды обращения. Это открытие подкрепило гипотезу Коперника, показав, что обращение Луны вокруг Земли не есть уникальное явление. В июле 1610 Галилей обнаружил то, что принял за два спутника Сатурна, которые, в отличие от обращающихся вокруг планеты спутников Юпитера, постоянно держались по бокам от диска планеты и были едва различимы. Они исчезли в 1612, вновь появились в 1613 и стали похожи на "ручки". Это загадочное явление объяснил лишь в 1659 Х. Гюйгенс (1629-1695) как изменение внешнего вида кольца, окружающего планету. В изучении Венеры Галилей достиг большего. Осенью и зимой 1610-1611 он обнаружил, что Венера, подобно Луне, имеет цикл смены фаз. Поскольку Венера никогда не удаляется от Солнца более чем на 48°, а в сильно ущербленной и выпуклой фазах видна еще ближе к Солнцу, наблюдение полного цикла ее фаз пришлось проводить в сумерки и дневное время, что весьма непросто. Эта полная смена фаз окончательно сломила систему Птолемея, согласно которой Венера не может демонстрировать полного цикла фаз. Вскоре после обнародования наблюдений Галилея в практической астрономии перестали пользоваться системой Птолемея. В конце 1610 с помощью телескопа и аккуратно выполненных рисунков Галилей смог проследить перемещение пятен по диску Солнца. Перспективное искажение формы пятен при их приближении к лимбу Солнца и одинаковое время (ок. 14 сут), за которое они пересекали солнечный диск по параллельным траекториям, указывали, что пятна находятся на сферической поверхности самого Солнца. Их движение свидетельствовало о том, что Солнце вращается так же, как вся остальная Солнечная система Коперника. Слава Галилея и поддержка, полученная им от многих здравомыслящих ученых, вызвали недовольство и интриги со стороны приверженцев церкви и взглядов Аристотеля. В 1616 инквизиция осудила учение Коперника о том, что "Солнце неподвижно пребывает в центре мира, а Земля движется и вращается". Галилею пришлось заявить, что он не поддерживает это учение. Тем не менее с 1625 по 1630 он работал над "Диалогом о двух главнейших системах мира - птолемеевой и коперниковой" (Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano, 1632). Эта книга Галилея, написанная по-итальянски, а не на латыни, как было тогда принято, имеет форму диалога, в котором с полной очевидностью усматриваются Аристотель, сам автор и любопытствующий простак. Открытия с телескопом, изучение приливов и другие исследования Галилея, представленные в Диалоге, ясно показывают, что только гипотеза Коперника может объяснить все эти явления. В 1633 Галилея вызвали в инквизицию, судили и подвергли домашнему аресту до конца жизни. Его последний труд Беседы и математические доказательства, касающиеся двух новых наук (Discorsi e dimostrazioni mathematiche intorno a due nuove scienze attenenti alla meccanica, 1638) содержит систематическое изложение новой физики. См. также <<ГАЛИЛЕЙ Галилео>>. Наблюдения Галилея с телескопом открыли новую эру в астрономии. Телескопы быстро распространились в Европе, где их модернизировали и использовали многие увлеченные и прилежные наблюдатели. За несколько десятилетий после первых открытий Галилея астрономы обнаружили в космосе бездну новых явлений. Они описали множество деталей на поверхности Луны, Марса, Юпитера и, немного позже, Сатурна, открыв при этом его кольца. Было исследовано движение четырех спутников Юпитера и обнаружены у него и Сатурна другие спутники. Удалось наблюдать фазы Венеры, хотя на ней и на маленьком Меркурии почти не было видно деталей. Телескоп не только помог увидеть новые объекты и явления, но и стал важным дополнением к традиционным приборам для измерения положений звезд и планет, что позволило измерять положения значительно точнее и было незамедлительно использовано при вычислении эфемерид. Астрономия попала в круг правительственных интересов. Торговое, военное и научное мореплавание крайне нуждалось в точном определении долгот. В Париже (1667), Гринвиче (1675) и Берлине (1705) были основаны государственные обсерватории для составления точных таблиц положения навигационных звезд и движения Луны и планет, которыми могли бы пользоваться моряки. См. также <<ОБСЕРВАТОРИЯ>>. ЭПОХА НЬЮТОНА Ньютон и гравитация. Замена небесных сфер Аристотеля кеплеровым движением планет по эллиптическим орбитам выдвинула на передний план вопрос о силах, удерживающих планеты на орбитах. Французский философ и математик Р.Декарт (1596-1650) предположил, что все пространство между телами заполнено тончайшей материей. Вихри этого вещества удерживают планеты на их орбитах, а все взаимодействия передаются путем прямого контакта. См. также <<ДЕКАРТ Рене>>. В конце 1600-х годов в научных кругах Англии стали обсуждаться альтернативные теории тяготения. Поскольку было известно, что свет ослабляется пропорционально квадрату расстояния, несколько английских ученых, включая Э.Галлея (1656-1743), Р.Гука (1635-1702) и К.Рена (1632- 1723), предположили, что могла бы существовать некая подобная сила взаимного притяжения тел. Ни один из них, однако, не дал математического решения этой проблемы. См. также <<ГАЛЛЕЙ Эдмунд>>; <<ГУК Роберт>>; <<РЕН Кристофер>>. В 1684 Галлей посетил И. Ньютона (1643-1727), чтобы обсудить проблему тяготения, и, увидев, что тот близок к ее решению, настоял на ускорении работ. Следующие три года Ньютон при поддержке Галлея почти непрерывно трудился над этой проблемой. Объединив исследования Галилея над падающими на Земле телами и кеплеровы законы планетных движений, Ньютон создал строгую теорию тяготения, действительно объединившую Солнце, Землю и планеты в единую систему. Ньютон изложил свои открытия в "Математических началах натуральной философии" (Philosophiae naturalis principia mathematica, 1687). Все наблюдаемые в Солнечной системе явления выводились в книге Ньютона с математической точностью из нескольких основных принципов и закона всемирного тяготения. Книга I - математическое описание движения свободного тела под влияние действующих на него сил - утверждает новые принципы механики. Она начинается с определения того, что теперь называют инерцией, массой и импульсом, а затем формулирует три знаменитых ньютоновых закона движения. Книга II - о движении тел в среде с сопротивлением - в основном опровергает теорию вихрей Декарта. В Книге III Ньютон применяет свою теорию гравитации фактически ко всем телам Солнечной системы - к планетам, Луне и другим спутникам, к кометам, - для которых имелись точные наблюдения. Ньютон продемонстрировал путем вычислений, что заметное отклонение Сатурна от эллиптической орбиты при его сближении с Юпитером происходит под действием притяжения к массивному Юпитеру. Он показал также, что многие неправильности в движении Луны вокруг Земли вызваны их различным притяжением к Солнцу, изменяющимся в ходе орбитального движения Луны. Он попытался объяснить прецессию, или предварение равноденствия - известное с античности медленное (50ўў) перемещение точек равноденствия по эклиптике навстречу годовому движению Солнца. Это небесное явление происходит потому, что ось вращения Земли медленно прецессирует, совершая конусообразный оборот вокруг полюса эклиптики примерно за 26 000 лет. Причиной прецессии Ньютон считал возмущающее влияние Солнца на экваториальное вздутие Земли. Результат его расчетов оказался в прекрасном согласии с астрономическими наблюдениями. Математическая теория всемирного тяготения оказалась чрезвычайно эффективной, дав количественное объяснение наблюдениям, на что неспособна была теория вихрей Декарта. См. также <<ТЯГОТЕНИЕ>>; <<НЬЮТОН Исаак>>. Развитие теории в 18 в. Неразрешимое противоречие между понятием о тяготении и действием сил на расстоянии крайне затрудняло распространение теории Ньютона. Тем не менее, в собственной стране он прошел путь от одинокого эксцентричного профессора Тринити-колледжа в Кембридже до президента Лондонского королевского общества (1703-1727). Хотя и медленно, его математические теории пускали корни. Сам Ньютон не мог объяснить особенностей движения всех членов Солнечной системы. Невозможно было точно аналитически решить задачу о движении уже трех взаимно притягивающихся тел. Даже приближенное ее решение требовало месяцев и годов кропотливых вычислений. Поколение талантливых континентальных, в первую очередь французских, математиков - таких, как А.Клеро (1713-1765), Ж. д'Аламбер (1717-1783), Л.Эйлер (1707-1783), Ж.Лагранж (1736-1813) и П.де Лаплас (1749-1827), - успешно разрешило, в большей или меньшей степени, ряд проблем, касающихся движения тел в Солнечной системе, применяя и развивая ньютонову теорию возмущений. См. также <<Д'АЛАМБЕР Жан Лерон>>; <<ЭЙЛЕР Леонард>>; <<ЛАГРАНЖ Жозеф Луи>>; <<ЛАПЛАС Пьер Симон>>. Движение Луны. Ньютон нашел движение Луны особенно запутанным. В частности, его геометрический анализ положения апсид лунной орбиты, основанный на теории тяготения и приведенный в Началах, выявил только половину их наблюдаемого перемещения. Однако в 1749 Клеро продвинул анализ до более высоких степеней приближения, и результат в точности совпал с наблюдениями. Этим было доказано, что закон обратных квадратов способен объяснить не только общее движение планет и спутников по эллиптическим орбитам, но и отклонения от него, особенно сильные в случае Луны. Движение комет. Ньютон разработал довольно громоздкий - частично арифметический, частично графический - метод вычисления орбиты кометы по нескольким наблюдениям. Применив его к кометам 1680 и 1681 годов, он предположил в Началах, что это, по-видимому, была одна и та же комета (наблюдавшаяся до и после прохождения перигелия, когда она временно скрывалась за Солнцем) и, более того, что она повинуется тем же законам динамики, что и прочие тела Солнечной системы. Галлей в 1690-х годах, изучив старые записи о появлении комет и уточнив метод расчета, определил орбитальные элементы 24 комет, наблюдавшихся между 1337 и 1698. Заметив схожесть орбит у комет 1531, 1607 и 1682, а также приблизительно одинаковые промежутки времени (75-76 лет) между их появлением вблизи Солнца, он заключил, что это тоже была одна и та же комета и что вариации периода вызваны гравитационными возмущениями со стороны Юпитера и Сатурна. Он предсказал ее следующее появление в 1758. В конце 1750-х годов Клеро предпринял детальный анализ возмущений и показал, что комета должна достичь перигелия в середине апреля 1759 с ошибкой не более месяца. Когда комета с соответствующими орбитальными элементами (впоследствии названная кометой Галлея) была обнаружена 25 декабря 1758 и прошла через перигелий 13 марта 1759, астрономы расценили это событие как еще один триумф ньютоновой теории тяготения. Устойчивость Солнечной системы. Ньютон полагал, что неправильности в движении Юпитера и Сатурна в период их соединения можно учесть с помощью теории возмущений. Однако вычисление поправок к планетным таблицам для их соответствия наблюдениям показало, что орбита Юпитера понемногу увеличивается, а Сатурна - уменьшается. Это вызвало большой интерес к долговременной устойчивости планетной системы. Только в 1784 П.де Лаплас окончательно доказал, что эти изменения носят циклический характер с периодом около 900 лет. В расчетных формулах они связаны с малыми членами высокого порядка, которые лишь изредка возрастают до значимых величин. Эти неправильности, заставившие сначала сомневаться в применимости теории Ньютона, стали теперь доказательством ее справедливости. Теория движения Юпитера и Сатурна оказалась в согласии со всеми наблюдениями вплоть до античных, и никаких специальных поправок к таблицам больше не требовалось. Лаплас увенчал 18 в. развитием ньютоновой теории тяготения в своем пятитомном Трактате о небесной механике (Trait de mchanique cleste, 1799- 1825). Предполагая, что все тела наделены тяготением, Лаплас утверждал, что если заданы начальные условия системы - положение и скорость каждого небесного тела в начальный момент времени, - то вся будущая эволюция мира вполне определена и может быть вычислена. Он наглядно продемонстрировал это, рассчитав различные возмущения планетной системы на сотни тысяч лет в прошлое и будущее. Основываясь только на теории тяготения, он вычислил движение Луны с точностью до 0,5ў. Используя те члены в теории Луны, которые зависят от сжатия Земли, он определил длину градуса широты, весьма точно совпавшую с результатами различных экспедиций, организованных французским правительством. Другие члены в уравнениях зависели от параллакса Солнца, который он рассчитал в хорошем согласии с наблюдательными данными экспедиций, посланных в различные уголки Земли для наблюдения редкого прохождения Венеры по диску Солнца в 1761 и 1769. (Измерение параллакса Солнца дает расстояние Земли от Солнца и позволяет установить точную шкалу расстояний в Солнечной системе.) Исследования Лапласа показали, что все планетные и лунные возмущения, проанализированные совместно, не нарушают долговременной устойчивости системы. В основном они периодические и взаимосвязанные: одно нейтрализует другое. Небулярная гипотеза. Лаплас создал еще одну синтетическую концепцию - свою космогоническую идею о совместном происхождении и развитии Солнца и всех планет. Согласно этой небулярной гипотезе (лат. nebula - туманность), Солнечная система возникла, когда обширная атмосфера молодого Солнца, остывая, сжимаясь и вращаясь от этого все быстрее, породила серию газовых колец в экваториальной плоскости Солнца. Затем каждое кольцо под действием тяготения собралось; подобный же процесс привел к формированию спутников. Так от теории возмущений, рассматривавшей кратковременную эволюцию орбитальных элементов, произошел переход к гораздо большим историческим масштабам. Небулярная гипотеза соперничала с другими теориями, предполагавшими катастрофическое происхождение Солнечной системы в результате столкновения кометы с Солнцем. Гипотеза Лапласа намного лучше гармонировала с ньютоновским духом века Просвещения, предполагавшим последовательное движение Вселенной, возникшей по милости Господа, давшего своему изумительному творению первичный толчок и позволившего ему в дальнейшем развиваться по законам природы. См. также <<СОЛНЕЧНАЯ СИСТЕМА>>. Усовершенствование телескопа. Астрономы ньютоновской эпохи интересовались и открывшимся им миром объектов за пределами Солнечной системы. Однако предложенный Галилеем телескоп-рефрактор был труден в изготовлении. Нелегко отлить прозрачную и свободную от дефектов стеклянную заготовку, а затем обточить и отполировать ее точно по сфере. Эти проблемы ограничивали размер объектива. К тому же, проходя через линзы, лучи разного цвета отклоняются немного по-разному и не собираются в одном фокусе; это вызывает хроматическую аберрацию, делающую изображения нечеткими, окруженными цветным ореолом. В конце 1660-х годов этим явлением заинтересовался и молодой Ньютон, поглощенный тогда исследованием света и цвета. В представленном Королевскому обществу в 1671 телескопе нового типа вместо линзового объектива он использовал параболическое зеркало, также собирающее свет в точку. Изготавливать зеркало из металла было значительно проще, чем равную ему по размеру линзу; зеркало можно было сделать намного большего диаметра. Отражательный телескоп, названый рефлектором, стал популярен. Появились книги с описанием его изготовления, что вызвало рост числа астрономов-любителей. Ньютона. 1 - параболическое главное зеркало; 2 - плоское ньютоновское зеркало; 3 - главный фокус; 4 - фокус Ньютона. Первым астрономом, полностью раскрывшим возможности рефлектора, стал В. Гершель (1738-1822). Перебравшись в 1757 из Ганновера (Германия) в Англию, он осел в Бате и увлекся астрономией. В 1770-х годах он решил собственноручно построить телескоп из доступных материалов по опубликованному описанию. Работая терпеливо и упорно, он сделал несколько ньютоновских телескопов вплоть до диаметра 46 см и фокусного расстояния 6 м. Высокое качество его зеркал позволило использовать при наблюдениях чрезвычайно сильное увеличение, такое большое, что астрономическая общественность Гринвича и Лондона даже не поверила в это. Открытие Урана. В ходе систематического обзора всех звезд ярче 8-й величины Гершель 13 марта 1781 обнаружил в созвездии Тельца очень яркий объект, который он вначале принял за комету, поскольку диаметр видимого диска возрастал вместе с увеличением телескопа и было заметно движение на фоне звезд примерно на 1' в сутки. После нескольких месяцев наблюдений вычисления Гершеля и других ученых показали, что объект движется вокруг Солнца по почти круговой орбите далеко за Сатурном (почти в 19 раз дальше, чем Земля от Солнца) и поэтому является новой планетой; позже она получила имя Уран. За это открытие король Георг III пожаловал Гершелю ежегодную пенсию в 200 фунтов, которая, вместе с доходом от строительства и продажи телескопов, позволила ему посвятить большую часть времени астрономии. Ньютоновская теория тяготения получила новое подтверждение, поскольку движение Урана по орбите вполне согласовалось с этой теорией. Обзор звезд. Но поиск планет не был главным интересом Гершеля. Доведя свои инструменты до высочайшего качества и огромной оптической мощности, он предпринял систематический обзор двойных звезд, надеясь обнаружить физически близкие пары и определить расстояние до них методом параллакса. Подобно другим ученым эпохи Просвещения, изучавшим различные типы растений и животных и их распределение в природе, Гершель надеялся путем систематического обзора звезд создать "естественную историю" неба. Он разработал изощренную космогоническую схему, связавшую все наблюдаемые объекты в единую эволюционную последовательность. Еще Птолемей отмечал размытое пятнышко света в созвездии Андромеды, а телескоп показал множество таких пятнышек и компактных звездных скоплений. К 1770-м годам в каталогах было около 90 туманностей и скоплений. Неутомимый Гершель с помощью своих больших рефлекторов обнаружил их еще 2500. Он, как и некоторые его современники, в соответствии с традициями гравитационной астрономии и небулярной гипотезы 18 в. считал, что разреженные туманности должны под действием гравитации постепенно сжиматься, превращаясь в плотные скопления звезд. Исходя из наблюдаемой яркости туманностей и их схожести с кометными хвостами, Гершель и другие астрономы полагали, что это самосветящееся вещество, подобное атмосфере Солнца. Спиральная форма некоторых туманностей (позже отождествленных с галактиками), казалось, указывала на их сжатие. Считалось, что некоторые туманности, захваченные гравитационным полем существующих звезд, становятся кометами, которые при удачном соударении с центральной звездой могут конденсироваться в планеты. См. также <<ГЕРШЕЛЬ Джон Фредерик Уильям>>. Огромная работа Гершеля по подсчету звезд позволила ему получить наблюдательное подтверждение сделанного ранее (1750) Т. Райтом (1711-1786) предположения, что звезды не рассыпаны в пространстве хаотически, а образуют вращающийся диск. У. Парсонс (1800-1867) продолжил усилия Гершеля по разработке крупных рефлекторов. Его Левиафан - телескоп диаметром 1,8 м, установленный в семейном поместье Бирр-Кастл в Ирландии, - позволил Парсонсу разрешить на звезды многие туманности и впервые определенно установить спиральную форму некоторых из них. УСЕРДНЫЙ ДЕВЯТНАДЦАТЫЙ ВЕК Звездные каталоги и другие крупные работы по классификации. Телескоп позволил открыть множество разнообразных звезд и других небесных объектов, неведомых ранее астрономам. В конце 17 и весь 18 в. государственные обсерватории и самодеятельные астрономы систематически измеряли положения звезд и их блеск. Первый Королевский астроном Англии Дж.Флемстид (1646- 1719) составил в Гринвиче каталог 3000 звезд Британская история неба (Historia coelestis Britannica, 1725). Систематический обзор южного неба предпринял Галлей во время визита на остров Св. Елены (у западного побережья Африки) в 1676-1678, а затем французский астроном Н.де Лакайль (1713-1762) во время экспедиции на мыс Доброй Надежды в 1751-1753. См. также <<ФЛЕМСТИД Джон>>. Эти каталоги вскоре стали важными источниками информации. Детально изучив все звездные каталоги вплоть до Птолемея, Галлей (второй Королевский астроном) в 1718 обнаружил, что некоторые яркие звезды немного изменили свое положение с античных времен и что звезды, считавшиеся неподвижными, в действительности имеют собственные движения одна относительно другой. Это подтвердили и другие астрономы; вскоре собственные движения звезд стали измерять и изучать. В 1728 Дж. Брадлей (1693-1762), третий Королевский астроном, заметил периодическое годичное смещение положений всех звезд и объяснил эту, как ее назвали, "аберрацию" движением Земли по орбите. (См. также <<БРАДЛЕЙ Джеймс>>.) В 1783 Гершель, сопоставив направления собственных движений звезд, обнаружил, что само Солнце движется в направлении (солнечный апекс) созвездия Геркулес. Составление звездных каталогов активизировалось в 19 в. Между 1821 и 1833 Ф.Бессель (1784-1846) определил положение 75 000 звезд ярче 9-й величины, а Ф.Аргеландер (1799-1875) продолжил эту работу в своем Боннском обозрении (Bonner Durchmunsterung, 1859-1862), каталоге почти 325 000 звезд, положение которых было найдено путем аккуратного измерения их расстояний от опорных звезд, чьи координаты были известны с высокой точностью. Применение фотографии позволило быстрее определять положения звезд и точнее измерять их блеск. Я.Каптейн (1851-1922), изучая в течение 13 лет фотографии южного неба, составил Капское фотографическое обозрение (Cape Photographic Durchmunsterung, 1896-1900), в котором указаны положения 455 000 звезд со склонениями от -18° до южного полюса мира. См. также <<АРГЕЛАНДЕР Фридрих Вильгельм Август>>; <<БЕССЕЛЬ Фридрих Вильгельм>>. В 1871 Немецкое астрономическое общество организовало совместный обзор собственных движений звезд многими обсерваториями мира, выделив каждой обсерватории свой участок неба. В 1887 начался проект Карта неба (Carte du Ciel) по созданию фотографического каталога всех звезд до 15-й величины. Этот гигантский проект длился более века, загрузив работой многие обсерватории. Было отснято 22 200 фотопластинок, а неполный каталог опубликован только в 1964. Между 1918 и 1924 вышел 9-томный Каталог Гарвардской обсерватории (Henry Draper Catalogue, HD,), содержащий классификацию спектров 225 300 звезд, проделанную Э.Кэннон по гарвардской системе. Полностью эту работу завершили ученые Государственного астрономического института им. П.К.Штернберга (МГУ, Москва), создав в 1995 Астрографический каталог Карты неба, содержащий точные положения (ошибка 0,3") и собственные движения 4,5 млн. звезд. См. также <<ЗВЕЗДЫ>>. которую можно заметить невооруженным глазом в Мече Ориона, светится из-за горячих звезд, находящихся в большом облаке из газа и пыли. Создавались также каталоги туманностей и других объектов. Ш. Мессье (1730- 1817) составил свой знаменитый каталог (опубликованный в 1774 и позже дополненный до 103 объектов) для того, чтобы астрономы при поиске комет не путали их с туманностями. Теперь ярчайшие туманности известны по их номерам в каталоге Мессье: например, М 42 - большая туманность в Мече Ориона, М 31 - туманность Андромеды, оказавшаяся галактикой. В 1864 Дж.Гершель (1792-1871) опубликовал Общий каталог туманностей (General Catalogue of Nebulae). В 1888 Й.Дрейер (1852-1926) опубликовал Новый общий каталог туманностей и звездных скоплений (New General Catalogue of Nebulae and Star Clusters), содержащий 7840 объектов, к которым через 7 лет он добавил в приложениях еще 1529 объектов. Многие из этих объектов до сих пор обозначают их номерами по NGC. См. также <<ГАЛАКТИКИ>>; <<ГЕРШЕЛЬ Джон Фредерик Уильям>>. Определение годичного параллакса. В начале 19 в. на смену стенному квадранту, служившему для измерения положений звезд, пришел новый пассажный инструмент, и к середине столетия он распространился повсеместно. Это телескоп-рефрактор, поворачивающийся в плоскости меридиана на очень точной монтировке с полным градуированным кругом и микроскопами для считывания с него склонений; прямое восхождение определялось путем точной регистрации момента времени пересечения звездой сетки нитей. Бессель мастерски владел этим инструментом. Он открыл небольшие смещения у Сириуса и Проциона, не связанные с движением Земли вокруг Солнца, но тоже периодические. Позже у этих звезд были обнаружены слабые компаньоны, вызывающие их "покачивания". В конце 1830-х годов Бессель, Т. Хендерсон (1798-1844) и В.Я.Струве (1793- 1864) независимо обнаружили вызванный движением Земли вокруг Солнца годичный параллакс звезд 61 Лебедя, a Кентавра и a Лиры (Вега), определив тем самым расстояние до них. Ожидавшееся с античности открытие параллаксов дало возможность определять пространственное положение звезд и место Солнца среди них. Обследование Солнечной системы. Рост числа профессиональных и самодеятельных наблюдателей и возрастание мощности телескопов сделало наблюдение планет весьма популярным в 19 в. Внутренние планеты. Маленький Меркурий трудно исследовать, но И. Шретер (1745-1816) опубликовал несколько зарисовок слабо различимых деталей на нем, по которым он вывел ложный период вращения в 24 ч; Шретер нашел, что поверхность Меркурия неровная. Венеру наблюдать значительно легче, чем Меркурий, но и для нее было сделано несколько ошибочных заключений. Некоторые наблюдатели также вывели ее период вращения в 24 ч и утверждали, что они видели торчащие над облаками горы. Достаточно четкие детали поверхности Марса позволили Гюйгенсу в 1659 вывести период вращения в 24 ч, а Дж. Кассини (1625-1712) в 1666 обнаружить белые полярные шапки. Крупные телескопы 19 в. сделали Марс популярным объектом. Многие искусные наблюдатели составляли подробные карты его поверхности. Во время близкого противостояния 1877 года Дж.Скиапарелли (1835-1910) различил сеть пересекающихся линий, назвав их "каналами", что вызвало в начале 20 в. споры об их природе. В том же 1877 А. Холл (1829-1907) открыл два спутника Марса. Их орбитальное движение позволило определить массу Марса гораздо точнее, чем это удавалось по его слабому возмущающему влиянию на движение Юпитера. См. также <<ХОЛЛ Асаф>>. Внешние планеты. Юпитер был главным объектом визуальных наблюдений в 19 в.; многие вели систематические зарисовки деталей его диска. Большое Красное Пятно (впервые замеченное Р.Гуком в 1664), полосы и зоны, а также некоторые временные образования постоянно находились под наблюдением ученых. Астрономы наблюдали и диск Сатурна, но его детали не столь выразительны. В 1855 Кембриджский университет учредил премию им. Адамса за выяснение того, являются ли кольца Сатурна твердыми, жидкими или состоящими из отдельных частиц. Единственный соискатель - Дж.Максвелл (1831-1879), позже прославившийся исследованиями по электромагнетизму, - доказал, что по законам механики Ньютона было бы неустойчивым любое образование, кроме роя частиц, независимо летящих по орбитам. В конце столетия Дж.Килер (1857- 1900) доказал по доплеровскому смещению линий в спектре кольца, что его внутренний край движется быстрее наружного. См. также <<МАКСВЕЛЛ Джеймс Клерк>>. К 1840 рассогласования в движении Урана стали серьезной проблемой: не удавалось вычислить для него такую орбиту, которая удовлетворяла бы всем наблюдениям планеты, включая и те, что были сделаны еще до открытия Гершеля. Предположив наличие за Ураном планеты, которая могла бы возмущать его движение, два математика - англичанин Дж.Адамс (1819-1892) и француз У.Леверье (1811-1877) - независимо вычислили ее возможное положение и массу. 23 сентября 1846 этот объект по информации У.Леверье был обнаружен и правильно истолкован в Берлинской обсерватории И.Галле (1812-1910) и А.д'Арре (1822-1875). Через несколько недель У.Ласселл (1799-1880) открыл крупнейший спутник Нептуна - Тритон. См. также <<АДАМС Джон Кауч>>. Луна. Еще в 1824 Ф. Груйтзен из Мюнхена, вероятно, последним из профессиональных астрономов предполагавший разумную жизнь на Луне, описал на ее поверхности дороги, города, укрепления и даже звериные тропы. Однако, наблюдая в 1834 заход звезд за лимб Луны, Бессель не обнаружил у нее атмосферы. К концу 19 в. были отброшены последние надежды обнаружить на Луне жизнь. Тем не менее, составление карт лунной поверхности стало очень популярным. Среди наблюдателей выделялись работавшие совместно В.Бер (1797-1850) и И.фон Медлер (1794-1874). Проделав микрометрические измерения сотен деталей в качества реперных точек и измерив тени более тысячи гор для определения их высот, они составили в 1836-1837 изумительную карту Луны диаметром 97,5 см, сопроводив ее таблицами и подробным описанием. См. также <<МЕДЛЕР Иоганн Генрих>>. В 1890-х годах Г.Гилберт (1843-1918), глава Геологической службы США, заинтересовался природой лунных кратеров. Его телескопические исследования лунной поверхности подтвердили метеоритную природу этих кратеров. Астероиды. Когда в 1781 планету Уран открыли почти точно на расстоянии, предсказанном законом Боде (установленным незадолго до этого эмпирическим правилом для определения расстояний известных к тому времени планет от Солнца), Ф. фон Цах (1754-1832), директор обсерватории в Готе, начал поиски неизвестной планеты, которую закон Боде размещал на расстоянии 2,8 астрономической единицы (между Марсом и Юпитером). Тщетно пытаясь обнаружить "неуловимую" планету в 1780-х и 1790-х годах, Ф.фон Цах организовал в 1800-х годах для ее планомерного поиска две дюжины астрономов, каждый из которых на своем участке Зодиака должен был отмечать положения слабых объектов. Необычный объект, не похожий на комету, был обнаружен 1 января 1801 в Тельце астрономом из Палермо (о.Сицилия) Д.Пиацци (1746-1826), работавшим по собственной долговременной программе над звездным каталогом. Пиацци наблюдал за движением небесного тела до 11 февраля, когда тот скрылся в лучах Солнца. Поскольку его наблюдения покрыли малую геоцентрическую дугу (3°), несколько астрономов вывели по ним разные орбиты и предсказали для нового объекта различные положения. Этой проблемой заинтересовался математик К.Гаусс (1777-1855) и разработал новый метод расчета орбиты, который позволил Г.Ольберсу (1758-1840) перехватить 1 января 1802 вблизи предвычисленного положения Цереру, как Пиацци впоследствии назвал свой объект. См. также <<ГАУСС Карл Фридрих>>. За шесть лет наблюдений было открыто еще три похожих объекта: Паллада (28 марта 1802) и Веста (29 марта 1807) Г.Ольберсом и Юнона (1804) К.Хардингом (1765-1834). Схожесть их орбитальных элементов и ошибочное мнение, что их орбиты пересекаются, позволили Ольберсу предположить, что эти астероиды (как назвал их Гершель) являются осколками разрушенной планеты. Некоторые считали, что астероиды сформировались раздельно, но эта гипотеза выглядела не столь привлекательно, как та, что предполагала одну, хотя и недолго жившую планету в промежутке между Марсом и Юпитером. Все надежды заполнить этот промежуток неким эквивалентом крупной планеты рухнули после нескольких десятилетий безрезультатных поисков. Лишь после того, как Берлинская академия в 1840-х годах организовала программу наблюдения конкретных участков Зодиака в различных обсерваториях, количество астероидов стало быстро возрастать (более 100 к 1870). Применение фотографии уменьшило роль карт и помогло находить даже слабые астероиды. М.Вольф (1863-1932) ввел в 1891 метод их фотографического поиска и сам открыл 231 астероид. К 1900 их было открыто более 450, к 1950 более 1500, а к 1980 более 3000. См. также <<ВОЛЬФ Максимилиан Франц Йозеф Корнелиус>>. Вначале наблюдатели определяли только относительный блеск и орбитальные элементы астероидов, а об их размерах и свойствах строили догадки. Некоторым казалось, что Церера и Паллада окружены туманностями, возможно, представляющими их собственные атмосферы или газы, стянутые с пролетавших мимо комет. Более века астероиды, или, как теперь их чаще называют, малые планеты изучали лишь методами небесной механики и фотометрии; иногда удавалось измерить их оптические диаметры. Кометы и метеориты. Астрономы 18 в. оставили много наблюдений и вычислений кометных орбит, к которым в 19 в. добавилось множество орбит астероидов. Фотография и спектроскопия существенно преобразили науку о кометах. Снимки с длительными экспозициями выявили новые детали в структуре кометных голов и хвостов. Полярископ показал, что солнечный свет рассеивается в хвостах комет, по-видимому, мелкими частицами пыли. Спектроскоп обнаружил яркие полосы, характерные для возбужденных молекул газа, хотя для идентификации этих молекул уже в 20 в. понадобилась большая работа лабораторных спектроскопистов и теоретический аппарат квантовой физики. Но все же углерод и натрий уже тогда удалось опознать. Метеориты, представляющие промежуточное звено между кометами и астероидами, падали на поверхность Земли с момента ее рождения, но их не считали астрономическими объектами вплоть до 19 в., когда несколько мощных метеорных дождей вынудили ученых признать это. Анализ наблюдаемых траекторий некоторых метеоров из ежегодных потоков указал на их возможную связь с орбитами периодических комет. К концу 1860-х годов метеорный поток Леониды удалось связать с кометой Темпля - Тутля, а Персеиды - с кометой Свифта - Тутля. Рой осколков и пылинок в поясе астероидов выглядит подходящим поставщиком метеороидов, но механизм их переноса к Земле не был понятен астрономам вплоть до 20 в. См. также <<МЕТЕОР>>; <<МЕТЕОРИТ>>. Солнце. Солнце представляет огромный интерес как для наблюдателей, так и для теоретиков. Довольно долго его считали твердым телом, окруженным сияющей атмосферой и, возможно, даже пригодным для жизни. В 19 в. от этих взглядов пришлось отказаться, и астрономы попытались понять, откуда берется такое гигантское количество энергии. Много сторонников нашла гипотеза Р.Майера (1814-1878) о том, что температуру Солнца поддерживает постоянное падение на него метеоритов, но У.Томсон (1824-1907) (позже получивший титул лорда Кельвина) показал, что отсутствуют очевидные небесномеханические следствия этой гипотезы. Поэтому он предположил, что энергия Солнца выделяется в результате гравитационного сжатия, продолжающегося с эпохи его конденсации из туманности. Некоторые в качестве источника солнечной энергии предлагали химические реакции, но вычисления показали, что если бы Солнце целиком состояло из такого топлива, как уголь, то энергии его горения хватило бы не более чем на 3000 лет. Решение этой проблемы нашли уже в 20 в. Эйнштейн и Бор. См. также <<ТОМСОН Уильям>>. В середине века несколько ученых проанализировали многолетние наблюдения солнечных пятен и обнаружили цикл с периодом ок. 11 лет. К тому же они заметили его схожесть с циклами полярных сияний и магнитного поля Земли. Возникло подозрение, что пятнообразовательная и магнитная активность Солнца влияет на магнитную активность Земли и даже на погоду, но целый век эта идея оставалась неподтвержденной. В конце 19 в. была установлена четкая статистическая связь магнитной и авроральной активности Земли с 11- летним циклом солнечных пятен и 27-дневным периодом вращения Солнца. Систематические ежедневные измерения и результаты многочисленных экспедиций для наблюдения солнечных затмений дали астрономам богатую информацию об основных явлениях на Солнце (пятнах и протуберанцах) и его оптических слоях (фотосфере и хромосфере). См. также <<СОЛНЦЕ>>. Развитие спектроскопии и фотографии. Две технические новинки 19 в. переориентировали астрономию с позиционных и небесномеханических исследований на изучение состояния космических тел. Спектроскопия - анализ света небесных объектов - предоставила возможность определять химический состав и физическое состояние далеких тел. Фотография позволила многие минуты и даже часы накапливать свет от неярких источников (тогда как глаз аккумулирует свет лишь долю секунды) и надежно регистрировать наблюдения. Все это сделало видимыми слабые и диффузные объекты и дало возможность регистрировать, а затем детально анализировать их спектры. См. также <<ОБСЕРВАТОРИЯ>>; <<СПЕКТРОСКОПИЯ>>. В 1814 Й. Фраунгофер (1787-1826) заметил множество тонких темных линий в спектрах Солнца и ярких звезд (несколько линий наблюдал Уильям Волластон еще в 1802) и установил, что некоторые из них знакомы ему по спектрам лабораторных горелок. (Анализ попущенного через призму света нагретого в пламени вещества стал позже обычным лабораторным методом.) Р.Бунзен (1811- 1899) и Г.Кирхгоф (1824-1887), работая вместе, обнаружили в 1860, что различные металлы имеют характерные наборы таких линий. Затем Кирхгоф установил, что если в нагретом состоянии вещество излучает определенные линии, то в спектре света, пропущенного через его охлажденные пары, на этих же местах образуются темные линии поглощения. Поэтому каждое вещество оставляет свои следы не только в излучении горячего космического тела, но и в свете, прошедшем сквозь холодный объект, скажем, межзвездное облако. Сначала астрономы использовали спектроскоп для визуального изучения спектров. Но настоящая эра спектроскопии началась после ее объединения с фотографией, когда при помощи спектрографа стали получать спектрограммы. См. также <<СПЕКТРОСКОПИЯ>>; <<БУНЗЕН Роберт Вильгельм>>; <<ФРАУНГОФЕР Йозеф>>; <<КИРХГОФ Г
Орфографический словарь Лопатина
археоастрон`омия, археоастрон`омия, -и
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: АРХЕОАСТРОНОМИЯ


будет выглядеть так: Что такое АРХЕОАСТРОНОМИЯ