Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

МЕНДЕЛЯ ЗАКОНЫ

Большая советская энциклопедия (БЭС)
        или правила, открытые Г. Менделем (См. Мендель) закономерности, обнаружившие дискретную, корпускулярную природу наследственности. Сам Мендель формулировал лишь «закон комбинации различающихся признаков», который объяснял обнаруженные им явления расхождения и независимого комбинирования наследственных факторов (названных позднее Генами) в потомстве. В ранний период развития Менделизма обычно принимали три М. з. — доминирования, расщепления и независимого комбинирования, считая равнозначным, относить ли действие М. з. к признакам организма или к наследственным факторам, локализованным в половых клетках. Поэтому первым М. з. считали закон доминирования, по которому в первом поколении от скрещивания особей, различающихся по аналогичным — аллельным признакам (см. Аллели), проявляется лишь один из них — доминантный, второй же, ему альтернативный, — остаётся скрытым, рецессивным (см. Доминантность, Рецессивность). Однако вскоре были обнаружены «нарушения» этого М. з. — промежуточное проявление обоих признаков в 1-м поколении. Вследствие этого первый М. з. стали называть законом единообразия первого поколения гибридов. Второй М. з., обычно называемый законом расщепления, осуществляется при скрещивании между собой гибридов первого поколения или при их самоопылении. В этом случае пары аллельных генов расходятся, в результате чего в потомстве появляются в определённых численных отношениях доминантные и рецессивные признаки, скрытые в предыдущем поколении. Наконец, третьим М. з. считался закон независимого комбинирования признаков. Он осуществляется при скрещивании, в котором сочетаются более одной пары аллельных генов. В результате в потомстве наблюдается свободное комбинирование всех участвующих в скрещивании пар аллелей и возникают все возможные их комбинации в определённых численных отношениях. Этот закон — прямое следствие явлений расщепления. Поэтому правильнее называть его законом независимого расщепления различных пар аллелей. Мендель доказал и подсчитал все возможные типы расщепления и комбинирования различных пар генов между собой, дав общую формулу соотношения наблюдающихся в скрещивании типов. Однако эти формулы действительны для сочетания генов, участвующих в скрещивании (см. Генотип). Что же касается проявляющихся в развитии конкретных признаков, то дальнейшие исследования обнаружили ряд осложнений, связанных с закономерностями взаимодействия различных генов между собой в процессах развития определяемых ими признаков (см. Плейотропия, Полимерия, Эпистаз). Поэтому не следует рассматривать эти взаимодействия в качестве нарушающих закон независимого расщепления или комбинирования. Частичное нарушение этого закона наблюдается лишь в обнаруженных позже явлениях сцепления генов (См. Сцепление генов). Т. о., необходимо строго различать закономерности, связанные с передачей и распределением в потомстве наследственных факторов, и закономерности, связанные с реализацией этих факторов в развитии организма. К первым, являющимся генотипическими закономерностями, относятся М. з. расщепления и независимого комбинирования, ко вторым, фенотипическим закономерностям — доминирование, промежуточное проявление и многие др. формы взаимодействия аллельных и неаллельных генов. М. з. получили полное подтверждение и объяснение на основе хромосомной теории наследственности (См. Хромосомная теория наследственности).
        
         Лит. см. при статьях Генетика, Менделизм.
         А. Е. Гайсинович.
Современная Энциклопедия
МЕНДЕЛЯ ЗАКОНЫ (или правила), закономерности распределения в потомстве наследственных факторов, названных позднее генами. Сформулированы Г.И. Менделем. Включают законы: единообразия гибридов первого поколения, расщепления гибридов второго поколения, независимого комбинирования признаков (точнее, закон независимого расщепления).Законы Менделя получили подтверждение и объяснение на основе хромосомной теории наследственности.
Медицинская энциклопедия
(G.J. Mendel, 1822—1864, чешский естествоиспытатель)
эмпирические правила наследования, устанавливающие численные соотношения, в которых отдельные наследственные признаки и их сочетания проявляются в гибридном потомстве при половом размножении.
Антисери Д., Реале Дж. Западная философия от истоков до наших дней

Открытие хромосом и новое открытие законов Менделя
    Генетика, занятая механизмами биологического наследования, возникла внутри эволюционной теории. Известно, что уже в 1866 г. Мендель сформулировал фундаментальные законы генетики. Он передал результаты своих исследований Нёгели, который не осознал всей их важности. Мендель скрестил и искусственно вырастил высокую и низкую культуры зеленого сладкого горошка, получив семена только высоких растений. Соотношение выхода высоких к низким растениям, полученным из этих семян, составило 3 к 1%.
    Из низких растений далее получились только низкие особи. Из полученных высоких растений 25% от их общего числа производили только высоких потомков, а из остальных 75% — 50% высоких и 25% низких особей. Это первый закон Менделя — закон сегрегации. Если скрещивать растения или животных, различающихся более чем парой признаков, можно получить всевозможные комбинации. Второй закон Менделя — закон независимости наследования.
    В конце XIX—начале XX веков о законах Менделя вновь вспомнили. Немец Вальтер Флемминг (1843—1945) при помощи хроматины (окрашивающего состава) обнаружил внутри клеточного ядра нитеобразные хромосомы. Ему удалось пронаблюдать процесс деления клетки (митоз), когда каждая хромосома производит свою копию. Флемминг опубликовал полученные результаты в 1882 г. Эти цитологические исследования продолжил бельгиец Эдвард ван Бенеден (1846—1910). Он доказал постоянство набора хромосом у каждого вида животных и растений: 46 (23 пары) хромосом у человека, 20 (10 пар) — у кукурузы, 12 (6 пар) — у мухи, 8 (4 пары) — у дрозофилы (муха — герой генетики). Каждая пара хромосом состоит из материнской и отцовской хромосомы. Бенеден, кроме того, обнаружил, что в формировании половых клеток (яйцеклетки и сперматозоида) разделению хромосом не предшествует их удвоение. Если бы этот процесс (мейоз) не происходил, то каждый новой индивид, начинающийся с объединения двух клеток, должен был бы иметь двойной набор хромосом.
    Когда были открыты эти хромосомные процессы, законы Менделя и все предыдущие догадки предстали в удивительно разумной гармонии. Американец Уолтер Сеттон (1876—1916) заметил, что хромосомы выглядят как наследственные факторы Менделя. У каждой клетки есть фиксированное число пар хромосом, и у каждой есть способность передавать наследственные признаки от одной клетки к другой. Новый организм образуется от слияния яйцевой материнской клетки и сперматозоида с отцовским набором хромосом. Эти сочетания хромосом дают возможность каждому поколению усилить некоторые рецессивные черты и ослабить доминантные. Все новые комбинации приводят к изменениям свойств, используемым затем в процессе естественного отбора.
Гены внутри хромосом
    Между 1910-м и 1920 гг. американский зоолог Томас Морган (1866—1945) показал, что внутри клеточного ядра упорядочены гены. В виде большой молекулы полинуклеотида эти частицы несут наследственную информацию. Репродуцируя себя, они сохраняют собственную индивидуальность и независимость от других генов, а значит, и способность к самым различным комбинациям.
    Морган провел серию опытов с drosophila melanogaster, насекомым, обладающим только четырьмя парами хромосом и имеющим период созревания от яйца до взрослого состояния 12 дней. Опыты показали, что признаки, наследуемые вместе, иногда все же разделяются. Морган объяснил это тем, что хромосома содержит гены, т.е. разделена на определенные характерные фрагменты, что позволяет ей затем обменяться с похожим фрагментом другой хромосомы.
    В 1927 г. Герман Йозеф Мюллер, ученик Моргана, сделал сенсационное открытие. Бомбардируя гамма-лучами гаметы (сперматозоиды и яйца животных, зернышки цветочной пыльцы и семяпочки растений), он получил огромное число мутаций. Суть открытия состояла в том, что был указан путь исследования гена.
    К началу Второй мировой войны генетика установила: 1. Гены отвечают за наследственные черты; 2. Гены находятся в линейном порядке в хромосоме; 3. По числу и качеству для каждого вида хромосомный набор — величина постоянная; 4. Несмотря на постоянство, эти структуры способны к изменениям; 5. Изменения, или мутации, разделяются по трем категориям: генные (переход от одного гена к аллельному состоянию), хромосомные (структурные вариации внутри одной хромосомы) и геномные (вариации с числом хромосом).
    Следующей сенсацией стало открытие генетического кода — еще одно блестящее достижение человеческого разума в познании развития жизни. Если эволюционная теория помогла понять историю жизни, то не менее важно было понять сам источник жизни. Старый спор: жизнь исходит от материи или же «все живое изначально живо»? Рождается ли организм (например, бактерия) спонтанным образом? Правда, открытие фильтрабильного вируса (ultra virus) представляется серьезным шагом к абиогенезу.
    Как бы то ни было, но с вирусами-паразитами нет пока оснований связывать источник жизни. В 1950-х гг. Г. Юри и С. Миллер показали формирование органических комплексов — аминокислот (основа молекул протеинов — базовых элементов протоплазмы). Через смесь воды, водорода, метана и аммиака Миллер пропускал электрический разряд высокой частоты. В результате он получил сложные молекулы аминокислот. И хотя эксперимент недостаточен, чтобы понять проблему зарождения жизни, он приоткрывает завесу над этой тайной.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: МЕНДЕЛЯ ЗАКОНЫ


будет выглядеть так: Что такое МЕНДЕЛЯ ЗАКОНЫ