Слово, значение которого вы хотите посмотреть, начинается с буквы
А   Б   В   Г   Д   Е   Ё   Ж   З   И   Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Ы   Э   Ю   Я

ИММУНИТЕТ

Большая советская энциклопедия (БЭС)
I
Иммунитет (от лат. immunitas — освобождение, избавление от чего-либо)
        невосприимчивость организма к инфекционным агентам и чужеродным веществам антигенной природы, несущим чужеродную генетическую информацию. Наиболее частым проявлением И. является невосприимчивость организма к инфекционным заболеваниям.
         Врождённый И. (неспецифический, конституциональный, видовой) — невосприимчивость, связанная с врождёнными биологическими (наследственно закрепленными) особенностями организма, например И. человека к чуме собак и чуме рогатого скота или И. животных к гонорее и проказе. Разные особи в пределах одного вида также могут иметь неодинаковую устойчивость к одному и тому же заболеванию (индивидуальные особенности И.).
         Приобретённый И. (специфический) — невосприимчивость организма к инфекционным заболеваниям, возникающая в течение жизни организма. Различают естественный и искусственный приобретённый И. Обе эти формы И. могут быть активными (организм сам вырабатывает Антитела после перенесённого заболевания или активной иммунизации (См. Иммунизация)) и пассивными (за счёт готовых антител, искусственно вводимых при пассивной иммунизации, например при введении противодифтерийной сыворотки или при проникновении их к плоду от матери через плаценту или к ребёнку через материнское молоко). Активный И. более стойкий и более длительный. При некоторых заболеваниях (например, оспе) он сохраняется всю жизнь, при других (например, корь, скарлатина и т. п.) — многие годы, но по наследству не передаётся. Пассивный И. наступает через несколько часов после введения антител и продолжается от 2—3 недель до нескольких месяцев.
         И. подразделяют на антимикробный (защитные силы организма направлены против самого возбудителя) и антитоксический (защитные силы направлены против токсинов, вырабатываемых возбудителем), стерильный (существующий и после исчезновения возбудителя из организма) и нестерильный. Нестерильный И. развивается и существует лишь при наличии в организме инфекционного начала. Эту форму И. можно наблюдать при туберкулёзе. Приобретённый И. во всех формах чаще всего является относительным. При массивной инфекции он может быть преодолен, хотя заболевание в этих случаях протекает легче. Особенности иммунологической реактивности отдельных тканей и органов к той или иной инфекции послужили основанием для выделения понятия местного И. (А. М. Безредка, 1925). Формирование такого И. всегда сопровождается появлением более или менее выраженного общего И.
         Примером неинфекционного И. служит И., развивающийся при пересадке тканей, — так называемый трансплантационный И., основную роль в развитии которого играют иммунные лимфоциты (см. Иммунология, Трансплантация).
         Механизмы И. Неповрежденная кожа и слизистые оболочки являются барьером для большинства микробов, так как обладают бактерицидными свойствами. Предполагается, что эти свойства кожи обусловлены главным образом молочной и жирными кислотами, выделяемыми потовыми и сальными железами. Молочная кислота и жирные кислоты вызывают гибель большинства патогенных бактерий. Например, возбудители брюшного тифа погибают через 15 мин контакта со здоровой кожей человека. Столь же губительно на бактерии и патогенные грибы действуют: отделяемое наружного слухового прохода, смегма, лизоцим, содержащийся в отделяемом многих слизистых оболочек, муцин, покрывающий слизистые оболочки, соляная кислота, ферменты и жёлчь в пищеварительном тракте. Слизистые оболочки некоторых органов обладают способностью механически удалять попадающие на них частицы. Например, движения ресничек эпителия слизистой оболочки способствуют удалению из дыхательных путей бактерий, частиц пыли и пр. Внутренняя среда организма млекопитающих в нормальных условиях стерильна.
         Все агенты, повышающие проницаемость кожи или слизистой оболочки, понижают их устойчивость к инфекциям. При массивности инфекции и высокой вирулентности (См. Вирулентность) микробов кожные и слизистые барьеры оказываются недостаточными, и микробы проникают в более глубокие ткани. При этом в большинстве случаев возникает Воспаление, что препятствует распространению микробов из места их проникновения. Ведущую роль в фиксации и уничтожении микроорганизмов в очаге воспаления играют нормальные и иммунные антитела и Фагоцитоз. В фагоцитозе участвуют клетки местной мезенхимальной ткани и клетки, вышедшие из кровеносных сосудов. Возбудители, не подвергшиеся уничтожению в очаге воспаления, фагоцитируются клетками ретикуло-эндотелиальной системы в лимфатических узлах. Барьерная, фиксирующая функция лимфатических узлов повышается в процессе иммунизации.
         Проникшие через барьеры микробы и чужеродные вещества подвергаются воздействию системы Пропердина, содержащейся в плазме крови и тканевой жидкости и состоящей из Комплемента, или алексина, пропердина и солей магния. Лизоцим и некоторые пептиды (спермин) и липиды, освобождающиеся из лейкоцитов, также способны убивать бактерии. В неспецифическом противовирусном И. особое место занимают нейраминовая кислота, мукопротеиды эритроцитов и клеток бронхиального эпителия. При проникновении вируса, микроба и др. клетки выделяют защитный белок — Интерферон. Кислая реакция тканевой среды, обусловленная присутствием органических кислот, также препятствует размножению микробов. Высокое содержание кислорода в тканях тормозит размножение анаэробных микроорганизмов. Эта группа факторов неспецифична, она оказывает бактерицидное действие на многие виды бактерий.
         Основной формой специфического иммунологического ответа на введение чужеродных веществ и инфекцию является образование в организме антител (см. Иммунология, Иммуногенетика).
         Антитела, в зависимости от вызываемого ими действия, называются агглютининами, преципитинами, бактериолизинами, антитоксинами, опеонинами. Они вызывают агглютинацию (склеивание) и лизис (растворение) микробов, преципитацию (осаждение) антигена (См. Антигены), инактивируют токсины и подготовляют микробы к фагоцитозу. В определённых случаях могут образоваться аутоантитела — антитела, направленные против собственных тканей и клеток организма и являющиеся причиной аутоиммунных заболеваний (См. Аутоиммунные заболевания). Способность организма синтезировать антитела определённой специфичности и формировать специфический И. определяется его генотипом. Основная масса антител синтезируется в плазматических клетках и клетках лимфатических узлов и селезёнки. После введения антигена происходит иммунологическая перестройка организма, которая осуществляется в две фазы. В первую (латентную) фазу, длящуюся несколько суток, в лимфоидных органах возникают адаптивные морфологические и биохимические изменения. В этой фазе антиген подвергается переработке ретикулоэндотелиальными клетками, а фрагменты его контактируют избирательно с соответствующими лейкоцитами. Во вторую (продуктивную) фазу образуются специфические антитела. Вырабатываются антитела в плазматических клетках, образующихся из недифференцированных ретикулярных клеток, и, в меньшей степени, в лимфоцитах. Во второй фазе появляются «долгоживущие» лимфоциты — носители так называемой «иммунологической памяти». Повторное введение очень небольшой дозы антигена может вызвать размножение этих клеток и возникновение плазматических клеток, вновь образующих антитела. Сохранение организмом иммунологической «памяти» лежит в основе потенциального И. Так, после вакцинации дифтерийным анатоксином организм ребёнка сохраняет устойчивость к заражению дифтерией, несмотря на исчезновение из кровотока соответствующих антител, поскольку очень незначительные дозы дифтерийного токсина способны вызвать у него интенсивное образование антител. Такое образование антител носит название вторичного, анамнестического («по памяти»), или ревакцинаторного, ответа. Очень высокая доза антигена может, однако, вызвать гибель клеток — носителей иммунологической «памяти», вследствие чего образование антител будет выключено, введение антигена останется без ответа, т. е. возникнет состояние специфической иммунологической толерантности. Особо важное значение иммунологическая толерантность имеет при пересадке органов и тканей (см. Трансплантация).
         Иммунологическая перестройка организма, происходящая после введения антигена или заражения, помимо образования защитных антител, может приводить к повышенной чувствительности клеток и тканей к соответствующим антигенам, т. е. к развитию аллергии (См. Аллергия). В зависимости от сроков появления симптомов повреждения после повторного введения антигенов (аллергенов) среди аллергических реакций различают повышенную чувствительность немедленного и замедленного типов. Повышенная чувствительность немедленного типа обусловлена особыми циркулирующими с кровью или фиксированными в тканях антителами (реагенами); повышенная чувствительность замедленного типа связана со специфической реактивностью лимфоцитов и макрофагов, несущих так называемые клеточные антитела. Многие бактериальные инфекции и ряд вакцин вызывают повышенную чувствительность замедленного типа, которую можно выявить с помощью кожной реакции на соответствующий антиген (см. Аллергические диагностические пробы). Повышенная чувствительность замедленного типа лежит в основе реакции организма на чужеродные клетки и ткани, т. е. в основе трансплантационного, противоопухолевого И. и ряда аутоиммунных заболеваний. Одновременно с повышенной чувствительностью замедленного типа в организме может возникнуть специфический клеточный И., который проявляется тем, что данный возбудитель не может размножаться в клетках иммунизированного организма. Повышенную чувствительность замедленного типа и связанный с ней клеточный и трансплантационный иммунитет можно перенести неиммунизированному животному с помощью живых лимфоцитов иммунизированного животного той же линии и таким образом создать у реципиента воспринятый (адаптивный) И.
        
         Лит.: Петров Р. В., Введение в неинфекционную иммунологию, Новосиб., 1968; Фонталин Л. Н., Иммунологическая реактивность лимфоидных органов и клеток, Л., 1967; Незлин Р. С., Биохимия антител, М., 1966; Зильбер Л. А., Основы иммунологии, 3 изд., М., 1958: Здродовский П. Ф., Проблемы инфекции, иммунитета и аллергии, 3 изд., М., 1969; Вернет Ф. М., Клеточная иммунология, пер. с англ., М., 1971.
         А. Х. Канчурин, Н. В. Медуницын.
II
Иммунитет (историческое)
        в средневековой Европе привилегии крупных земельных собственников, заключавшиеся в обладании правами политической власти над населением вотчины. Оформлялся И. королевскими пожалованиями, которые передавали магнатам права на производство суда (как правило, в объёме низшей юрисдикции), взимание налогов и др. поборов, отправление полицейских и военно-административных функций в пределах их владений (а иногда и на более обширной территории), запрещая доступ на иммунитетную территорию государственным должностным лицам. И. получил широкое распространение уже во Франкском государстве (первые дошедшие до нас иммунитетные грамоты относятся к середине 7 в.). В процессе политической централизации институт И. приходит в упадок.
         Специфика феодальных отношений в разных странах влияла на характер И. Так, в Германии, где расцвет И. приходится на время правления Саксонской династии (10—11 вв.), развитие И. приводило в ряде случаев к образованию компактных иммунитетных владений, что имело большое значение в оформлении территориальных княжеств. В Англии, где в англосаксонский период получил развитие преимущественно судебный И. (см. Сока), в целом И. был слабо выражен. В Византии Экскуссия, близкая к франкскому И., носила характер податных изъятий.
         И. сыграл большую роль в развитии феодальной собственности. Реализуя предоставленные им права, вотчинники-иммунисты подчиняли своей власти крестьян, сохранявших ещё свободу. Присваивая налоги и другие поборы (собиравшиеся ранее в пользу государства), феодалы — обладатели иммунитетных прав — увеличивали объём феодальной эксплуатации. И., атрибут крупной феодальной земельной собственности, являлся важнейшим фактором в процессе формирования системы внеэкономического принуждения (См. Внеэкономическое принуждение).
        
         Лит.: Данилов А. И., Основные черты иммунитета и фогтства на церковных землях в Германии Х—XII вв., в сборнике: Доклады и сообщения исторического факультета МГУ, в. 7, М., 1948: Гутнова Е. В., К вопросу об иммунитете в Англии XIII в., в сборнике: Средние века, в. 3, М., 1951; Граменицкий Д. С., К вопросу о происхождении и содержании франкского иммунитета, там же, в. 2, М., 1946.
         Я. Д. Серовайский.
Мультимедийная энциклопедия
способность организма человека и животных специфически реагировать на присутствие в нем какого-то вещества, обычно чужеродного. Эта реакция на чужеродные вещества обеспечивает сопротивляемость организма, а потому чрезвычайно важна для его выживания. В основе реакции лежит синтез специальных белков, т.н. антител, способных вступать в соединение с чужеродными веществами - антигенами. Наука, изучающая механизмы иммунитета, называется иммунологией. В прошлом термин "иммунитет" относился лишь к реакциям, направленным против микроорганизмов. В настоящее время он применяется для обозначения реакций организма на любые антигены. Антиген - это обычно крупная молекула или комбинация молекул, индуцирующая образование антител. Антигенными свойствами обладают белки (особенно, если они содержат определенные аминокислоты типа тирозина) и полисахариды (большой молекулярной массы) всех живых организмов. Молекулы, которые не вызывают образования антител, но тем не менее способны связываться с ними, называют гаптенами или неполными антигенами. Не все животные, даже одного вида, вырабатывают антитела в ответ на введение определенных антигенов: некоторые антигены вызывают такой ответ лишь у группы особей. Только теплокровные позвоночные, включая человека, способны образовывать преципитирующие (т.е. осаждающие антиген) антитела; однако ряд холоднокровных позвоночных вырабатывают в чем-то схожие вещества, называемые агглютининами. Образование антител у беспозвоночных окончательно не установлено. Взаимодействие антиген - антитело. Антитела реагируют только с теми антигенами, которые индуцировали их синтез. Изменения химической или физической структуры антигенов приводят к образованию иных, видоизмененных антител. Такое прямое соответствие между антигенами и антителами известно под названием специфичности. Пауль Эрлих (1854-1915) одним из первых указал на значение специфичности. Он предположил, что боковые цепи молекулы антигена подходят к рецепторным участкам в молекуле антитела, как ключ к замку. Позже К. Ландштейнеру (1868-1943) удалось показать, что в антисыворотке иммунного животного (т.е. в сыворотке крови, содержащей антитела) обнаруживаются антитела, способные различать молекулы антигенов с одинаковой молекулярной массой и одинаковым набором атомов, но отличающиеся друг от друга пространственной структурой. В настоящее время представление о том, что комплементарность структуры определенного участка антигена и активного центра антитела определяет специфичность их взаимодействия, является общепризнанным. Иммунная реакция. Основными элементами иммунной системы организма являются белые клетки крови - лимфоциты, существующие в двух формах. Обе формы происходят из клеток-предшественников в костном мозге, т.н. стволовых клеток. Незрелые лимфоциты покидают костный мозг и попадают в кровяное русло. Некоторые из них направляются к тимусу (вилочковой железе), расположенному у основания шеи, где происходит их созревание. Прошедшие через тимус лимфоциты известны как Т-лимфоциты, или Т-клетки (Т от "тимус"). В экспериментах на цыплятах было показано, что другая часть незрелых лимфоцитов закрепляется и созревает в сумке Фабрициуса - лимфоидном органе около клоаки. Такие лимфоциты известны как В-лимфоциты, или В-клетки (B от bursa - сумка). У человека и других млекопитающих В- клетки созревают в лимфатических узлах и лимфоидной ткани всего организма, эквивалентных сумке Фабрициуса у птиц. Оба типа зрелых лимфоцитов имеют на своей поверхности рецепторы, которые могут "узнавать" специфический антиген и связываться с ним. Контакт В- клеточных рецепторов со специфическим антигеном и связывание определенного его количества стимулируют рост этих клеток и последующее многократное деление; в результате образуются многочисленные клетки двух разновидностей: плазматические и "клетки памяти". Плазматические клетки синтезируют антитела, выделяющиеся в кровоток. Клетки памяти являются копиями исходных В-клеток; они отличаются большой продолжительностью жизни, и их накопление обеспечивает возможность быстрого иммунного ответа в случае повторного попадания в организм данного антигена. Что касается Т-клеток, то при связывании их рецепторами значительного количества определенного антигена они начинают секретировать группу веществ, называемых лимфокинами. Некоторые лимфокины вызывают обычные признаки воспаления: покраснение участков кожи, местное повышение температуры и отек за счет увеличения кровотока и просачивания плазмы крови в ткани. Другие лимфокины привлекают фагоцитирующие макрофаги - клетки, которые могут захватывать и поглощать антиген (вместе со структурой, например бактериальной клеткой, на поверхности которой он находится). В отличие от Т- и В-клеток эти макрофаги не обладают специфичностью и атакуют широкий спектр разных антигенов. Еще одна группа лимфокинов способствует разрушению инфицированных клеток. Наконец, ряд лимфокинов стимулирует добавочное количество Т-клеток к делению, что обеспечивает быстрое возрастание числа клеток, которые отвечают на тот же антиген и выделяют еще больше лимфокинов. Антитела, вырабатываемые В-клетками и поступающие в кровь и другие жидкости организма, относят к факторам гуморального иммунитета (от лат. humor - жидкость). Защита организма, осуществляемая с помощью Т-клеток, называется клеточным иммунитетом, так как в ее основе лежит взаимодействие отдельных клеток с антигенами. Т-клетки не только активируют другие клетки путем выделения лимфокинов, но и атакуют антигены с помощью содержащих антитела структур на поверхности клетки. Антиген может индуцировать оба типа иммунного ответа. Более того, в организме происходит определенное взаимодействие между Т- и В-клетками, причем Т-клетки осуществляют контроль над В-клетками. Т-клетки могут подавлять B-клеточный ответ на безвредные для организма чужеродные вещества или, наоборот, побуждать В-клетки вырабатывать антитела в ответ на вредные вещества с антигенными свойствами. Повреждение или недостаточность данной контролирующей системы может проявляться в виде аллергических реакций на вещества, обычно безопасные для организма. Селекция антител. Этот процесс определяет, какие именно антитела должны образоваться, чтобы бороться со специфическим антигеном, выделяя его из миллиардов других антигенов, потенциально угрожающих организму. Механизм такой селекции остается еще не до конца ясным. Рассуждая логически, трудно предположить, что в каждом лимфоците содержится информация для синтеза миллиардов разных антител, большинство из которых никогда не пригодится. Одна из ранних теорий, получившая название "инструктивной", постулировала, что антитела синтезируются в незавершенном виде. Когда же антиген попадает в организм, он действует как матрица, на которой происходит окончательное формирование узнающего участка антител; иными словами, сам антиген служит "инструкцией" для создания специфичных именно к нему антител. В настоящее время известно, что структура белковой молекулы антитела зависит от последовательности и взаимного расположения составляющих ее "кирпичиков" - аминокислот и что внешние причины, в том числе антигены, не могут вызвать существенных структурных перестроек. Поэтому была выдвинута новая теория - "клональной селекции". Согласно этой теории, в организме человека содержится около 10 млрд. слегка отличающихся друг от друга разновидностей лимфоцитов, причем каждая из них весьма немногочисленна. Когда антиген попадает в организм, он связывается только теми лимфоцитами, которые способны узнавать его. Связывание с антигеном создает стимул для их деления; в результате образуется большое число одинаковых клеток - клон, и численность отобранного варианта клеток быстро достигает необходимого уровня. Теория клональной селекции не давала объяснения, каким образом исходно возникает колоссальное разнообразие лимфоцитов или их предшественников. Однако недавно механизм такой диверсификации как будто прояснился. Показано, что гены клеток, участвующих в иммунной реакции и продукции специфических антител, претерпевают частые случайные изменения за счет перегруппировок их отдельных участков; соответственно меняется закодированная в них информация, т.е. появляются новые, разнообразно измененные по этому признаку клетки, а в целом вся популяция лимфоцитов приобретает способность реагировать с разными антигенами. Кроме того, на протяжении многих клеточных поколений, требующихся для превращения стволовых клеток в зрелые лимфоциты, происходят случайные мутации в генах, кодирующих антитела. Эти мутации дополнительно увеличивают разнообразие лимфоцитов. Примечательно, что те молекулы на поверхности Т-лимфоцитов, которым они обязаны своей специфичностью, имеют во многом ту же структуру, что и циркулирующие в крови антитела, вырабатываемые В-лимфоцитами. Пассивный иммунитет. Иммунитет, возникающий в результате инъекции готовых антител, а не работы клеток самого организма, называют пассивным. Такой иммунитет, однако, сохраняется недолго - пока в организме циркулируют введенные антитела (гамма-глобулины). У человека это составляет несколько недель. Наоборот, активный иммунитет, когда в организме продуцируются собственные антитела, часто бывает пожизненным. См. также <<ВАКЦИНАЦИЯ И ИММУНИЗАЦИЯ>>. Изоантитела. Антитела в крови выявляются не только после активной или пассивной иммунизации. У многих биологических видов, включая человека, постоянно идет (у всех представителей вида) синтез антител определенной специфичности, который не связан с иммунизацией. Такие антитела - их называют изоантителами - специфически направлены против антигенов других особей того же вида, т.е. против изоантигенов. Синтез изоантител обеспечивает естественный (врожденный) иммунитет (в отличие от приобретенного иммунитета, возникающего в результате иммунизации). Группы крови. Лучшим примером изоантигенов служит система антигенов, обозначаемая АВ0. Антигены А и В обнаруживаются на поверхности эритроцитов и во многих тканях. Они были выделены в очищенном виде, и анализ показал, что это сложные по структуре молекулы, состоящие из цепочек аминокислот и углеводов. У каждого человека, эритроциты которого несут антиген А или В (но не оба антигена вместе) или же не содержат их вовсе (группа крови 0), в кровяном русле циркулируют изоантитела, агглютинирующие (склеивающие) эритроциты других групп крови, кроме группы 0. После открытия Ландштейнером системы AB0-антигенов были обнаружены и другие антигены эритроцитов. Таковы, например, различающиеся между собой подгруппы A-антигена и MN-антигены; несоответствие по каждому из них у донора и реципиента может привести к реакциям несовместимости при переливании крови. С открытием новых, редких типов несовместимости обнаруживают и новые антигены групп крови, число которых постоянно увеличивается. Однако в отличие от ситуации с AB0-антигенами антитела к этим дополнительным антигенам в обычных условиях не вырабатываются, а появляются только после предварительного контакта, например предшествующего переливания крови. См. также <<КРОВЬ>>. Пересадка тканей. Еще один важный иммунологический феномен, связанный с изоантителами, наблюдается при трансплантации тканей. Гомотрансплантаты, т.е. ткани одного и того же организма или однояйцовых близнецов (например, при пересадке кожи или пластических операциях), обычно хорошо приживляются на новом месте. Иммунологическая реакция не развивается, так как гены и кодируемые ими белки в пересаженной ткани и клетках реципиента абсолютно одинаковы. Если же ткань взята от донора, не связанного с реципиентом близким родством, она может сохраняться на месте пересадки некоторое время, но затем отторгается. Следующий трансплантат от нового донора отторгается еще быстрее. Такое отторжение имеет иммунологическую природу - об этом свидетельствует успех трансплантации в случае сходной антигенной специфичности тканей донора и реципиента. Подбор донора по тканевой совместимости с реципиентом имеет жизненно важное значение при пересадках сердца, почек и других органов. Гены, ответственные за приживляемость или отторжение пересаженной ткани, образуют т.н. "главный комплекс гистосовместимости". Они кодируют синтез не только тканевых антигенов, определяющих успех или неуспех трансплантации, но и некоторых рецепторов на поверхности T-клеток. Определение продуктов этих генов помогает заранее определить, будет ли организм реагировать на специфические антигены пересаженной ткани. В некоторых условиях, в частности после контакта с каким-либо антигеном в период внутриутробного развития, развивается толерантность, т.е. неспособность реагировать на этот антиген в течение последующей жизни (см. также <<ПЕРЕСАДКА ОРГАНОВ>>). Синдром приобретенного иммунодефицита (СПИД). Об этом особо опасном для человека вирусном заболевании, связанном с повреждением иммунной системы, см. статью <<СИНДРОМ ПРИОБРЕТЕННОГО ИММУННОГО ДЕФИЦИТА>> (СПИД). Аутоиммунные заболевания. Многие болезни, например аутоиммунная гемолитическая анемия, развиваются в результате иммунологических реакций, направленных против антигенов собственных тканей. При этих заболеваниях, называемых также аутоиммунными, в организме образуются антитела, разрушающие собственные клетки (см. также <<СОЕДИНИТЕЛЬНАЯ ТКАНЬ>>). ЛИТЕРАТУРА Ройт А. Основы иммунологии. М., 1991
Современная Энциклопедия
ИММУНИТЕТ (от латинского immunitas - освобождение, избавление), способность организма защищать свою целостность и биологическую индивидуальность. Частное проявление иммунитета - невосприимчивость к инфекционному заболеванию. У позвоночных животных и человека формирование и поддержание приобретенного активного иммунитета осуществляется иммунной системой (включает красный костный мозг, тимус, лимфатические узлы, селезенку и некоторые другие органы), которая распознает, перерабатывает и устраняет чужеродные антигены (бактерии, вирусы и т.п.). Центральное место среди клеток этой системы занимают Ти В-лимфоциты. Происходящие от В-лимфоцитов плазматические клетки вырабатывают антитела. Приобретенный пассивный иммунитет развивается при передаче антител ребенку с молоком матери или искусственном введении антител при иммунизации. Врожденные или приобретенные дефекты иммунной системы приводят к снижению или отсутствию иммунного ответа организма и развитию иммунодефицитов, например СПИДа.
Медицинская энциклопедия
I
Иммунитет (лат. immunitas освобождение, избавление от чего-либо)
невосприимчивость организма к различным инфекционным агентам (вирусам, бактериям, грибкам, простейшим, гельминтам) и продуктам их жизнедеятельности, а также к тканям и веществам (например, ядам растительного и животного происхождения), обладающим чужеродными антигенными свойствами. Появление и накопление в организме клеток, отличающихся антигенной специфичностью (например, опухолевых клеток) также вызывает иммунную реакцию. Механизмы И. обеспечивают постоянство состава собственных антигенов (<<Антигены>>) индивидуума. Иммунная система не только осуществляет защиту организма от разнообразных инфекционных и неинфекционных чужеродных агентов, но и участвует в регуляции функциональной, пролиферативной и репаративной активности клеток разных органов и систем организма.
Состояние И. обеспечивают как наследуемые, так и индивидуально формируемые механизмы, которые позволяют не только распознавать и разрушать чужеродные агенты, но и запоминать их антигенную структуру, благодаря чему при повторном взаимодействии с теми же антигенами иммунный ответ возникает в более короткие сроки и бывает сильнее выраженным. В зависимости от свойств антигенов, вызывающих иммунный ответ организма, принято различать противобактериальный, противовирусный, противоопухолевый (см. <<Опухоли>>), <<Трансплантационный иммунитет>>, противопаразитарный, антитоксический и другие виды И. Иммунную реакцию против собственных антигенов называют аутоиммунной. В зависимости от механизмов, формирующих невосприимчивость организма к патогенным агентам, выделяют видовой, или врожденный, и приобретенный иммунитет.
К видовому И. относится невосприимчивость определенных видов животных или человека к возбудителям некоторых инфекционных болезней. Так, люди невосприимчивы к возбудителю чумы собак, многие животные — к вирусу кори, гонококку и ряду других возбудителей антропонозных инфекций. Устойчивость к соответствующей инфекции наследуется как видовой признак и проявляется у всех представителей данного вида. Напряженность видового И. очень высока и преодолеть ее удается с большим трудом. Так, Пастер (L. Pasteur) обеспечил восприимчивость лягушек к столбняку и цыплят к сибирской язве лишь при их длительном содержании в условиях повышенной (лягушки) или пониженной (цыплята) температуры. Молекулярно-клеточные механизмы видового И. изучены недостаточно. Предполагают, что они препятствуют как прикреплению возбудителей болезней к клеткам барьерных тканей и внедрению их в организм, так и размножению инфекционных агентов в организме хозяина. Видовой И. могут также обеспечивать неспецифические его факторы: комплемент, интерферон, фагоцитарно-активные клетки, естественные киллеры и др.
Приобретенный И. формируется в течение всей жизни индивидуума. В зависимости от условий и особенностей формирования различают активно и пассивно приобретенный И. Активно приобретенный И. возникает в результате перенесенного инфекционного заболевания или введения в организм вакцины. Пассивно приобретенный И. формируется при передаче антител от матери к плоду и может быть искусственно создан путем парентерального введения в организм антител или лимфоцитов от гипериммунных особей. Он развивается быстро (сразу же после введения соответствующих препаратов или клеток), но сохраняется менее продолжительно, чем активно приобретенный иммунитет.
Характер и сила иммунного ответа определяются деятельностью иммунной системы организма, которая в зависимости от своего состояния, способа введения антигена, его свойств, дозы и многих других условий обеспечивает формирование И. или, наоборот, состояния иммунологической ареактивности (толерантности). Последнее характеризуется отсутствием специфического иммунного ответа на введенный антиген.
Иммунная система организма включает центральные, или первичные (у птиц — вилочковая железа и фабрициева сумка, у животных — вилочковая железа, костный мозг, эмбриональная печень, лимфоидные образования толстой кишки и червеобразного отростка), и периферические, или вторичные (лимфатические узлы и селезенка), лимфоидные органы, а также циркулирующие и тканевые иммунокомпетентные клетки костномозгового происхождения — белые отростчатые эпидермоциты кожи (клетки Лангерганса), лимфоциты и моноциты, полинуклеарные лейкоциты и др. Большинство клеток иммунной системы постоянно циркулируют, перемещаясь из сосудистого русла в какой-либо отдел иммунной системы и обратно. Суммарная масса органов и клеток иммунной системы достигает у взрослого человека 1 кг.
В центральных органах иммунной системы происходит превращение клеток-предшественников в зрелые иммунокомпетентные клетки, в ее периферических органах осуществляются размножение и дифференцировка антиген-реактивных клеток. Все клетки иммунной системы постоянно взаимодействуют друг с другом, вступая в непосредственный контакт или выделяя в окружающую их среду разнообразные полипептидные молекулы с регуляторной или эффекторной активностью в отношении чужеродных и собственных клеток практически всех систем организма. Такие полипептидные молекулы, не являющиеся иммуноглобулинами, называют цитокинами (полипептиды, образуемые лимфоцитами, получили название лимфокинов, а образуемые макрофагами и моноцитами — монокинов). Иммунная охрана внутренней среды организма от чужеродных инфекционных и неинфекционных агентов осуществляется путем взаимодействия многих клеточных и гуморальных факторов И. Клетки иммунной системы и гуморальные продукты их жизнедеятельности обеспечивают неспецифические (без распознавания и запоминания особенностей строения чужеродных антигенов) и антиген-специфические реакции иммунной системы.
Гуморальные (водорастворимые) неспецифические факторы противоинфекционной защиты человека представлены разнообразными содержащимися в крови и жидкостях организма белками. Они могут сами обладать антимикробными свойствами или способны активировать другие гуморальные и клеточные механизмы противоинфекционного иммунитета. К гуморальным неспецифическим факторам противоинфекционной защиты относятся белки системы комплемента, лизоцим, трансферрин, С-реактивный белок и др. Эти факторы различаются не только происхождением, физико-химическими свойствами, скоростью биосинтеза и катаболизма, но и активностью в отношении тех или иных микроорганизмов. Одни из них, например система комплемента, обычно неактивны, но приобретают иммунологическую активность в результате каскадной активации и взаимодействия всех входящих в систему компонентов комплемента. Другие (лизоцим) являются ферментами, субстратами для которых служат определенные химические структуры клеточных стенок микроорганизмов. Третьи (трансферрин) конкурируют с микроорганизмами за важные для последних метаболиты, без которых микробы не могут размножаться. Циркулирующие в крови интерфероны, включаясь в клетки, повышают устойчивость к цитопатогенному действию вирусов, препятствуют их размножению в клетках. С-реактивный белок крови, образуя комплексы с полисахаридами микробного или иного происхождения, активирует систему комплемента, а также фагоциты и некоторые популяции лимфоцитов крови. В результате этого различные полисахаридные продукты деградации клеток быстро удаляются из крови, стимулируется цитотоксическая активность лимфоцитов и возрастает продукция иммуноглобулинов.
В неспецифической защите человека и животных от патогенных и непатогенных чужеродных агентов огромное значение имеют клетки, способные к фагоцитозу, а также клетки, обладающие цитотоксической активностью. Способность к фагоцитозу проявляют как циркулирующие клетки крови (полинуклеарные лейкоциты, моноциты), так и клетки различных органов и тканей (тканевые макрофаги, клетки эндотелия капилляров, гистиоциты, дендритные клетки лимфатических узлов). Активация этих клеток осуществляется продуктами жизнедеятельности микробов, их синтетическими аналогами, пектинами, а также компонентами комплемента (СЗа; С3b, С5а, C5b, С567), Fc -фрагментами иммуноглобулинов, С-реактивным белком. Фагоциты захватывают, умерщвляют и переваривают объекты фагоцитоза. Моноциты и некоторые другие фагоциты человека способны также передавать лимфоцитам фрагменты переваренного антигена в комплексе с DR -белками, локализованными на наружной мембране клетки. Такие комплексы отличаются высокой иммуногенностью и способны активировать клоны антиген-реактивных В- и Т-лимфоцитов. В умерщвлении захваченных микробов особенно важны кислородзависимые микробоцидные факторы фагоцитов, среди которых ведущее значение имеет миелопероксидазная система клеток.
К неспецифическим факторам И. относят естественные киллеры (англ. natural killer естественные убийцы, NK -клетки), которые представлены в организме человека несенсибилизированными клетками, осуществляющими независимый от антител и комплемента лизис клеток-мишеней. Большинство естественных киллеров являются большими гранулярными лимфоцитами, количество которых в периферической крови человека составляет приблизительно 5% от общего числа мононуклеарных клеток крови. Активностью естественных киллеров обладают также большие агранулярные лимфоциты. Естественные киллеры характеризуются рядом свойств, присущих как макрофагам, так и Т-лимфоцитам, и различаются между собой набором поверхностных антигенов, специфичностью к отдельным клеткам-мишеням, чувствительностью к активирующим сигналам, особенностями развития и др.
Естественные киллеры описаны у человека, обезьян, свиней, лошадей, морских свинок, крыс, мышей и других животных. Мишенями для естественных киллеров являются ядросодержащие, аутологичные, сингенные, аллогенные или ксеногенные клетки, но наибольшую активность естественные киллеры проявляют в отношении опухолевых клеток. При ряде вирусных заболеваний наблюдается усиление их цитотоксической активности по отношению к клеткам, инфицированным вирусами гриппа, кори, Эпстайна — Барр, простого герпеса. Мишенями для естественных киллеров могут служить также клетки различных тканей плода и новорожденного (костного мозга, вилочковой железы).
В течение длительного времени считали, что литическое действие в отношении клеток-мишеней является очень важной, но практически единственной функцией естественных киллеров в поддержании генетического гомеостаза. Дальнейшие исследования показали, что естественные киллеры обладают не только эффекторной, но и регуляторной активностью. Они способны усиливать пролиферацию Т-лимфоцитов, стимулировать ответ цитотоксических Т-лимфоцитов человека на инфицированные вирусом аутологичные клетки, тормозить антителообразование, регулировать гемопоэз и гранулоцитопоэз. Регуляторные функции естественных киллеров опосредуются, вероятно, медиаторами, выделяемыми в результате их митогенной, бактериальной или вирусной активации. Доказана продукция естественными киллерами интерлейкина-1, интерлейкина-2, альфа- и гамма-интерферонов, фактора роста В-лимфоцитов. колониестимулирующего фактора.
Принадлежность естественных киллеров к какой-либо из известных субпопуляций иммунокомпетентных клеток (Т-лимфоцитам, В-лимфоцитам, моноцитам) не установлена. Это связано с тем, что отдельные субпопуляции естественных киллеров несут на мембране молекулярные структуры, которые характерны для других клеток иммунной системы, например Т- и В-лимфоцитов. Возможно, что естественные киллеры являются представителями еще одной популяции — ни Т- ни В- лимфоцитов. Кроме того, имеется ряд фактов, свидетельствующих о том, что функции естественных киллеров и К-лимфоцитов выполняют одни и те же клетки. Однако в отличие от естественных киллеров К-лимфоциты способны лизировать только клетки-мишени с фиксированными на них антителами. К-лимфоциты отличаются исключительной гетерогенностью, наличием рецепторов к эритроцитам барана, компонентам комплемента и Fe-фрагментам иммуноглобулинов различных классов. Полагают, что благодаря наличию последних К-лимфоциты способны взаимодействовать и лизировать клетки-мишени с фиксированными на них антителами, даже если эти антитела разного видового происхождения. У большинства К-лимфоцитов имеются высокоаффинные рецепторы (с большой степенью прочности взаимодействия) к молекулам агрегированного lgG разных субклассов; сродство этих рецепторов к мономерным lgG существенно ниже.
Неспецифические клеточные и гуморальные механизмы И., взаимодействуя и дополняя друг друга, обеспечивают раннюю и достаточно надежную защиту организма от разнообразных возбудителей. По мере развития инфекции, вызванной высоковирулентными микроорганизмами, неспецифические механизмы противоинфекционной защиты дополняются антиген-специфическими факторами иммунитета.
У человека и высших животных приобретенный в течение жизни И. обусловлен лимфоцитами, взаимодействующими в процессе иммунного ответа как друг с другом, так и с так называемыми вспомогательными клетками (макрофагами, дендритными клетками лимфатических узлов, клетками Лангерганса и др.). Иммунная перестройка организма проявляется возросшей устойчивостью его по отношению к инфекции, накоплением в крови антиген-специфических лимфоцитов и антител, формированием повышенной чувствительности замедленного типа и других, так называемых, клеточных реакций И. (способность иммунных Т-лимфоцитов без участия комплемента убивать чужеродные клетки-антигены или собственные клетки, несущие на мембранах соответствующие антигены, отторжение чужеродных трансплантатов, участие в реакции «трансплантат против хозяина»).
Циркулирующие в крови лимфоциты, не различаясь морфологически, весьма гетерогенны по своему происхождению, функции, набору поверхностных антигенов и рецепторов, чувствительности к повреждающим агентам, продолжительности жизни и другим признакам и свойствам. В зависимости от происхождения различают две категории лимфоцитов: тимусзависимые (Т-лимфоциты) и тимуснезависимые (В-лимфоциты). И те, и другие, как и все остальные клетки крови, имеют одного предшественника — костномозговую стволовую клетку. Стволовая клетка костного мозга в зависимости от микроокружения, в котором происходит ее дальнейшее развитие, способна дифференцироваться в клетки-предшественники клеток эритроидного ряда, гранулоциты разного типа, лимфоциты и мегакариоциты. Еще на этапе эмбрионального развития организма клетки-предшественники попадают в вилочковую железу (тимус), под влиянием ее эпителиальных клеток и выделяемых ими гормонов превращаются во внутритимические стволовые клетки, которые затем последовательно дифференцируются в тимоциты и Т-лимфоциты. Последние покидают тимус и включаются в циркуляцию, отчасти оседая в определенных зонах периферических, или вторичных, лимфоидных органов (лимфатические узлы и селезенка). Миграция стволовых клеток в вилочковую железу и расселение посттимических Т-лимфоцитов по периферическим лимфоидным органам особенно активно происходят в эмбриональном и раннем постнатальном периодах развития организма; у взрослых эти процессы также происходят, но по мере старения организма их интенсивность постепенно снижается. Т-лимфоцитам в иммунном ответе отводят исключительно важную роль, поскольку наряду с клетками, обладающими эффекторными функциями и обеспечивающими клеточные реакции иммунитета, среди Т-лимфоцитов выявлены субпопуляции клеток, регулирующих активность и даже характер иммунного ответа (Т-лимфоциты-индукторы иммунного ответа, Т-хелперы, или помощники, Т-супрессоры и др.). Дифференцировке и созреванию Т-лимфоцитов способствуют гормональные пептиды вилочковой железы — тимозин, тимопоэтин, Т-активин, тималин и др. Покидающие тимус лимфоциты отличаются фенотипически и имеют маркеры, характерные для той или иной субпопуляции Т-лимфоцитов.
Гемопоэтическая стволовая клетка может попасть в фабрициеву сумку (у птиц) или в эмбриональную печень (у млекопитающих и человека), где превращается в В-лимфоцит. В конце ранней стадии дифференцировки В-лимфоциты уже могут реагировать с антигеном, что обусловливает ряд процессов, называемых в целом терминальной дифференцировкой. В-лимфоциты концентрируются во вторичных лимфоидных органах и обладают способностью к рециркуляции. Они являются предшественниками плазматических клеток, которые обеспечивают гуморальный иммунный ответ организма и накопление в крови антител разных классов и субклассов.
В лимфоидной системе человека насчитывается около 2?1012 лимфоцитов (приблизительно поровну Т- и В-лимфоцитов). Скорость обновления лимфоцитов чрезвычайно высока: ежесекундно может образовываться 106 лимфоцитов. Как Т-, так и В-лимфоциты постоянно циркулируют по лимфатической и кроветворной системе. В крови содержится лишь около 5% от общего количества лимфоцитов. Часть лимфоцитов погибает, и лимфоидная система восполняется новыми клетками. Популяции Т- и В-лимфоцитов (Т- и В-систем) неоднородны по продолжительности жизни: около 80% клеток — долгожители (100—200 дней), продолжительность жизни 20% клеток составляет всего 2—3 дня. Часть лимфоцитов, однако, может сохраняться в организме без деления в течение нескольких лет. Различается относительное содержание коротко- и долгоживущих Т- и В-лимфоцитов в крови, лимфе, периферических лимфоидных органах.
В зависимости от степени зрелости и функционального состояния клеток количество антиген-реактивных рецепторов на мембране лимфоцитов варьирует, достигая 104 у одной активированной клетки. Распознающими антигены рецепторами у В-лимфоцитов являются молекулы иммуноглобулинов разных классов (главным образом, по-видимому, мономерные lgM и lgD), встроенные в мембрану клетки и несколько отличающиеся архитектоникой тяжелых полипептидных цепей в молекуле от циркулирующих антител. Антиген-специфические рецепторы Т-лимфоцитов устроены сложнее и состоят из гликозилированных дисульфидно связанных гетеродимеров, ассоциированных на мембране клетки с ТЗ-белковым комплексом, который, в свою очередь, состоит из трех гликопротеидных цепей. Т-лимфоциты реагируют на антиген только в том случае, если антиген представляется им на мембранах других сингенных клеток в ассоциации с белками, производными 1-го и 2-го классов генов главного комплекса тканевой совместимости. Это и объясняет столь сложную организацию на Т-лимфоцитах антигенраспознающих рецепторов.
Каждый зрелый Т- и В-лимфоцит имеет рецепторы лишь к какой-либо одной антигенной детерминанте. Однако общее число клеток с идентичными антиген-специфическими рецепторами, способных взаимодействовать с одной и той же детерминантой (клетки одного клона), у неиммунных людей составляет около 105. С учетом большой гетерогенности популяции Т-лимфоцитов размеры их клонов, по-видимому, меньше, чем у В-лимфоцитов. Введенные или внедрившиеся тем или иным способом в организм чужеродные антигены захватываются гранулоцитами и моноцитами крови, циркулирующими и тканевыми фагоцитами. Моноциты и другие способные к фагоцитозу клетки обрабатывают и расщепляют антиген с помощью лизосомальных ферментов. Такие вспомогательные клетки, несущие на своей мембране DR -белки и их аналоги (продукты 2-го класса главного комплекса тканевой совместимости), способны затем экспрессировать на своей поверхности фрагменты антигена в ассоциации с DR-белками и представлять их Т-лимфоцитам — помощникам, имеющим соответствующие антиген-специфические рецепторы.
У людей представление антигена Т-лимфоцитам осуществляется DR+-макрофагами, дендритными клетками лимфатических узлов и селезенки, клетками Лангерганса, активированными В-лимфоцитами и др. Раздражение этих рецепторов на мембране лимфоцитов является пусковым сигналом для активации лимфоцитов соответствующего антиген-реактивного клона. В результате у лимфоцитов наблюдается перераспределение антиген-специфических рецепторов, сопровождающееся появлением на поверхности клетки новых рецепторов, активацией обмена фосфолипидов, усилением процессов гликолиза, биосинтеза ДНК, РНК и белков (антигензависимая активация лимфоцитов). В активированных лимфоцитах возрастает содержание циклических нуклеотидов и кальция, они усиленно синтезируют интерлейкины, часть из них превращается в бластные формы и делится (бластотрансформация лимфоцитов). Для активации и пролиферации клетки нуждаются в дополнительных разрешающих сигналах, подаваемых через соответствующие рецепторы лимфоцитов с помощью лигандов в виде молекул интерлейкинов или при прямом взаимодействии клеток разных популяций и субпопуляций. В результате антигенной активации в организме накапливаются лимфоциты данного клона с рецепторами к соответствующему антигену. Цитотоксические Т-лимфоциты различают антиген лишь на мембранах сингенных клеток, однако в этом случае антиген должен быть ассоциирован на мембране с трансплантационными антигенами (продукты генов 1-го класса главного комплекса тканевой совместимости).
В отличие от Т-лимфоцитов В-лимфоциты взаимодействуют как со свободными циркулирующими антигенами, так и с антигенами, представляемыми макрофагами или другими DR+-вспомогательными клетками. В результате взаимодействия с антигеном В-лимфоциты также активируются, превращаются в лимфобласты и при наличии последовательно подаваемых разрешающих сигналов пролиферируют; в организме накапливаются В-лимфоциты соответствующего антиген-реактивного клона. Часть клеток накопившегося клона под влиянием дифференцировочных сигналов превращается в плазмобласты, а затем в зрелые плазматические клетки. В плазматических клетках хорошо развит антителосинтезирующий и антителосекретирующий аппарат, и именно эти клетки продуцируют циркулирующие в крови антитела разных классов.
Таким образом, специфический иммунный ответ организма определяется активностью взаимодействия иммунокомпетентных клеток — макрофагов, антиген-специфических клонов эффекторных и регуляторых Т- и В-лимфоцитов, дифференцировкой В-лимфоцитов в плазматические клетки, накоплением антителопродуцирующих клеток и антител. Затухание иммунного ответа сопровождается активацией Т-супрессоров, а также В-лимфоцитов — предшественников плазматических клеток, продуцирующих антиидиотипические антитела. Часть из накопившихся в организме Т- и В-лимфоцитов антиген-специфических клонов превращаются в малые лимфоциты, носители иммунологической памяти.
Наблюдающаяся при иммунной реакции организма активация макрофагов, Т- и В-лимфоцитов проявляется также в виде усиленной продукции этими клетками интерлейкинов и интерферонов — регуляторых пептидов с низкой и средней молекулярной массой, являющихся гуморальными медиаторами иммунной системы. Интерлейкины выполняют функцию посредников, передающих клеткам различные сигналы и последующие разрешающие команды для их пролиферации и дифференцировки. Считают, что в зависимости от набора медиаторов, воздействующих на антигенстимулированный В-лимфоцит, он способен дифференцироваться в плазматическую клетку, секретирующую антитела преимущественно того или иного класса. Синтез определенных наборов медиаторов осуществляется различными субпопуляциями Т-хелперов. Они и определяют особенности формируемого иммунного ответа.
Характер и сила иммунного ответа организма широко варьируют в зависимости от свойств вводимого антигена (иммуногена), его дозы, места введения, схемы иммунизации и других факторов. Так, при прочих равных условиях однократное введение иммуногена в низких дозах, как правило, стимулирует преимущественно Т-клеточный иммунный ответ, проявляющийся, например, в виде реакций повышенной чувствительности замедленного типа. Увеличение дозы вводимого антигена сопровождается формированием гуморального иммунного ответа. Очень большие дозы антигена могут стимулировать субпопуляцию супрессорных Т-лимфоцитов и вызывать состояние специфической иммунологической толерантности (иммунологическая ареактивность) к данному антигену. При иммунизации наблюдается не только активация клеток, участвующих в иммунном ответе (моноцитов, Т- и В-лимфоцитов), но и стимулируется рециркуляция клеток в организме, возрастает скорость биосинтеза и содержание в крови различных медиаторов иммунной системы (интерлейкинов).
Различают системный и мукозный типы гуморального иммунного ответа. Системный иммунный ответ формируется при парентеральном введении антигена в организм и при распространении его по кровяному руслу или лимфатическим сосудам. Для системного иммунного ответа характерно накопление в крови антител классов lgM и lgG и в меньшей степени lgA. Мукозный тип гуморального иммунного ответа, как правило, наблюдается в тех случаях, когда антиген поступает в организм через слизистые оболочки, особенно через слизистую оболочку желудочно-кишечного тракта или дыхательных путей. При этом иммунный ответ отличается повышенным содержанием в секретах и слизи секреторных lgA-антител, а также накоплением в крови антител класса lgA, тогда как содержание в крови lgM- и lgG-антител увеличивается в меньшей степени.
При первичном иммунном ответе иммуноглобулины класса М накапливаются в крови ранее антител других классов, уровень которых возрастает лишь по мере развития иммунного ответа. При затухании иммунного ответа в организме сохраняются антиген-специфические малые Т- и В-лимфоциты — носители иммунологической памяти. В случае повторного попадания в организм тех же антигенов клетки иммунологической памяти быстро активируются, делятся и процесс накопления эффекторных и регуляторных лимфоцитов соответствующих антиген-специфических клонов происходит гораздо быстрее, чем при первичном иммунном ответе. В результате при вторичном иммунном ответе антитела в крови накапливаются после более короткого латентного периода и в более высоких титрах.
Способность индивидуума к сильному иммунному ответу контролируется генами иммунного ответа. Последние обеспечивают способность вспомогательных клеток синтезировать DR-белки, с участием которых соответствующие антигены представляются Т-лимфоцитам. Действие генов иммунного ответа отличается специфичностью, поэтому индивидуумы, не способные к сильному ответу на одни антигены (антигенные детерминанты), адекватно реагируют иммунологически на другие антигены.
Характеристику состояния иммунной системы организма, выраженную количественными и качественными показателями ее компонентов, называют иммунным статусом. Определение иммунного статуса проводят с целью правильной постановки диагноза заболевания, прогнозирования его течения и выбора метода лечения.
Противобактериальный иммунитет основан на сочетанием воздействии на бактерии и их токсины факторов неспецифической резистентности (лизоцима, комплемента, ?-лизинов, фагоцитов и др.) и факторов специфического иммунного ответа. Многие белки крови вместе с антителами откладываются на поверхности бактерий, блокируя их антигены и способствуя иммунному прилипанию к фагоцитам — начальной стадии фагоцитоза, а в последующем и перевариванию бактерий в фагоцитах. Такие белки, активирующие фагоцитоз микроорганизмов. называют опсонинами. Противобактериальные антитела, в частности антитела к адгезинам бактерий, препятствуют прикреплению бактерий к тканям организма и, следовательно, развитию начальной стадии инфекционного процесса. Антитела против токсинов бактерий участвуют в так называемом антитоксическом иммунитете. Антитоксические антитела, не влияя на колонизацию (заселение) бактериями слизистых оболочек, препятствуют развитию патологического процесса.
Лизоцим, обладая ферментативной активностью, разрушает пептидогликан клеточной стенки бактерий и приводит к их лизису. К лизоциму наиболее чувствительны грамположительиые бактерии, клеточные стенки которых в основном состоят из пептидогликана. Литическое действие, главным образом на грамотрицательные бактерии, оказывает и комплемент в результате его активации альтернативным (начиная с СЗ-компонента комплемента), например липополисахаридом клеточной стенки бактерий, или классическим (начиная с С1-компонента комплемента комплексом антиген—антитело) путем. Лизис бактерий осуществляется терминальными компонентами комплемента — С8 и С9. При активации комплемента образуются С3в-компоненты, которые вместе с Fc-фрагментами антител (lgM, lgG) взаимодействуют с соответствующими рецепторами фагоцитов. В результате обволакивания плазмолеммой фагоцита бактерий, опсонизированных белками крови, бактериальные клетки погружаются в цитоплазму, где бактерии располагаются в фагосомах, окруженных мембраной. Затем сливаются мембраны фагосомы и лизосомы, ферменты которой участвуют в разрушении бактерий. Переваривание бактерий происходит под влиянием гидролитических ферментов (гидролаз), действующих в кислой среде. Перевариванию подвергаются предварительно убитые бактерии. Фагоцитоз может быть завершенным (при разрушении бактерий) и незавершенным, в последнем случае бактерии размножаются в фагоците и происходит его гибель.
Противобактериальный И. можно оценить по наличию противобактериальных антител, относящихся к иммуноглобулинам классов G и М, а также по уровню активности комплемента, лизоцима, ?-лизина и других белков крови. совокупность которых определяет бактерицидное действие сыворотки крови. Его оценивают по степени задержки роста бактерий под влиянием сыворотки крови больного. Учитывают также показатели фагоцитоза, опсонофагоцитарный индекс и др. Опсонофагоцитарная реакция основана на опсонической активности сыворотки крови (стимуляция фагоцитоза сывороткой крови) и активности фагоцитов. Повышение активности опсонофагоцитарной реакции рассматривают как благоприятный фактор. Мероприятия по повышению защитных противобактериальных реакций организма заключаются в иммунизации вакцинами (<<Вакцины>>). При необходимости быстрой защиты вводят антитоксические или антибактериальные сыворотки (см. <<Иммунотерапия>>), создавая пассивный иммунитет. Применяют также общеукрепляющую терапию с назначением иммуномодуляторов.
Противовирусный иммунитет. Отличие противовирусного И. от других видов И. (против бактерий, простейших, грибков и т.д.) связано со своеобразием структуры и размножения вирусов, особенностями патогенеза вирусных инфекций. Видовой противовирусный И. обусловлен отсутствием у клеток данного вида организмов рецепторов для прикрепления (адсорбции) соответствующих вирусов или их неспособностью репродуцироваться после проникновения в клетку, наличием неспецифических ингибиторов и нуклеаз в сыворотке крови, множеством других факторов. Немаловажную роль в защите от вирусов играет воспалительная реакция, направленная на ограничение распространения вирусов в организме и фиксацию их в воротах инфекции. При этом помимо клеток крови (макрофагов, естественных киллеров) противовирусный эффект оказывают такие универсальные реакции на внедрение вирусов, как общее или локальное повышение температуры и увеличение кислотности среды.
Приобретенный противовирусный И. формируется в результате перенесенного заболевания или иммунизации организма с помощью вакцин. Он определяется сочетанием специфических факторов (иммуноглобулинов, В- и Т-лимфоцитов) и факторов неспецифической (естественной) резистентности (воспалительной реакции, интерферонов, противовирусных ингибиторов, естественных киллеров, макрофагов и др.). Так, термолабильные сывороточные ?-ингибиторы (?-липопротеины) обладают инактивирующим действием против широкого круга вирусов. Уровень содержания в сыворотке этих ингибиторов взаимосвязан с резистентностью организма к вирусному заражению. У новорожденных и детей первого года жизни он низок, чем в известной степени восприимчивость объясняется к вирусам.
Та же закономерность характерна для интерферонов — важнейших факторов неспецифической резистентности. Практически все вирусы обусловливают выработку интерферонов, их образование является одной из первых защитных реакций организма на внедрение вирусов. Интерфероны в отличие от антител подавляют внутриклеточные этапы репродукции вирусов в зараженных клетках и обеспечивают невосприимчивость к вирусам окружающих здоровых клеток. Попадая из ворот инфекции в кровь, интерфероны распределяются по организму, предотвращая последующую диссеминацию вирусов.
Таким образом, факторы неспецифической резистентности в сочетании с медиаторами воспаления способны разрушать инфицированные вирусами клетки. Если этого не происходит и вирусы размножаются, наступает вторая (специфическая) стадия противовирусного И., связанная с продукцией вируснейтрализующих антител В-лимфоцитами и активацией регуляторных Т-лимфоцитов (Т-хелперов, Т-супрессоров, цитотоксических лимфоцитов), а также обширного круга Т-лимфоцитов — эффекторов лимфоцитарно-моноцитарного ряда. Интенсивность противовирусного И. определяется сложной системой межклеточных и медиаторных отношений, меняющейся в зависимости от индивидуального иммунного статуса человека и особенностей конкретного возбудителя.
При острых (явных) инфекциях (гриппе, полиомиелите и др.) вскоре после контакта вирусов с клетками начинается разрушение последних. В этих случаях болезнь развивается быстро. При латентных (хронических, дремлющих, медленных инфекциях) вирусы могут оставаться в клетках неопределенно долгое время, не оказывая характерного повреждающего действия. Одним из механизмов такой персистенции может быть интеграция или встраивание генетическою материала (ДНК, РНК) вирусов в геном клетки. Под влиянием провоцирующих факторов (охлаждение, воздействие ионизирующего излучения, стрессы и др.) скрытая бессимптомная инфекция переходит в явное заболевание. Между этими двумя крайними видами взаимодействия вирусов с клетками существует множество переходных форм.
Наблюдается широкая индивидуальная вариабельность и способности организма к иммунному ответу. Уровень специфической и неспецифической резистентности помимо возможных врожденных дефектов определяется множеством других факторов (возраст, стрессы, питание, суточный биоритм, время года и т.д.). В отдельных случаях вирусы несколько видоизменяются и т.о. избегают нейтрализующего действия антител и других специфических механизмов иммунной защиты. Это явление, называемое антигенным дрейфом, особенно хорошо изучено в отношении вируса гриппа. В большинстве случаев основная роль в развитии противовирусного И. принадлежит регуляторным Т-лимфоцитам, осуществляющим контроль за антителообразующими В-лимфоцитами и эффекторными Т-лимфоцитами. Способность многих вирусов размножаться и разрушать клетки иммунной системы или подавлять их функции приводит к иммуносупрессии и может способствовать переходу острой инфекции в хроническую форму. Так, поражение вирусами макрофагов вызывает подавление их антигенпрезенттирующей функции и приостанавливает дальнейший иммунный ответ; взаимодействие вирусов с антигенными детерминантами главного комплекса гистосовместимости изменяет клеточные мембраны и вызывает дефектность цитотоксических микроцитов; заражение В-лимфоцитов вирусами герпеса может вызвать их поликлональную активацию и резкое увеличение числа инфицированных клеток. Другим результатом поликлональной стимуляции В-лимфоцитов является образование полиспецифических иммуноглобулинов классов G и М, которые могут взаимодействовать с клетками и тканями внутренних органов и провоцировать развитие аутоиммунного процесса. Наконец, поражение вирусами делящихся Т-хелперов при ВИЧ-инфекции резко снижает, вплоть до полного выключения, иммунную защиту. Более того, вирусы могут подавлять образование лимфокинов и тем самым нарушать нормальное функционирование иммунной системы.
Повышение невосприимчивости к вирусным инфекциям достигается вакцинацией, использованием интерферонов и их индукторов, иммуномодуляторов, с помощью различных химиопрепаратов. Исторически первым и надежным способом, приводящим к активации иммунитета, является вакцинация. Продолжительность противовирусного И. при вакцинации широко варьирует Наиболее длительную защиту обеспечивают вакцины против кори и желтой лихорадки (более 15 лет, возможно, пожизненно); эффект вакцин против полиомиелита, краснухи и эпидемического паротита сохраняется 5—8 лет, меньше длительность И. при гриппе (1—2 года). Однако возможности противовирусной вакцинации не беспредельны, т.к. большое число прививок может вести к развитию аллергических реакций, а при заболеваниях, вызываемых множеством вирусов (например, причиной острых респираторных заболеваний являются около 150 вирусов различных таксономических групп), вакцинация не дает желаемого эффекта. В этих случаях на первое место выдвигаются способы повышения неспецифической резистентности.
Интерфероны, иммуномодуляторы и химиопрепараты, не обладающие узкой специфичностью вакцин, можно использовать в тех случаях, когда вакцины отсутствуют или их применять поздно (заражение уже произошло). Как правило, эффект лечения тем выше, чем раньше оно начато, поэтому перечисленные препараты следует вводить при появлении первых признаков вирусного заболевания (в 1—2-й дни болезни). Интерфероны, их индукторы и иммуномодуляторы оказывают выраженное активирующее влияние на систему И., принимая участие практически во всех его реакциях; они могут увеличивать образование антител, стимулировать фагоцитоз, усиливать цитотоксическую активность лимфоцитов, подавлять гиперчувствительность замедленного типа, влиять на процессы реализации иммунологической памяти.
Иммунитет при паразитарных болезнях. Различают частичный видовой и абсолютный (т.е. полную невосприимчивость человека к данному виду паразита) иммунитет. например, у населения влажных тропиков Африки, в Южной Азии сформировался ряд аномальных гемоглобинов, эритроцитарных ферментопатий, что привело к частичному И. при тропической малярии. Населению определенных зон тропической Африки свойственна полная невосприимчивость к возбудителю трехдневной малярии Plasmodium vivax вследствие утраты эритроцитами антигенов группы Duffy, необходимых для проникновения плазмодия в клетку. Молекулярные факторы, обеспечивающие видовой И. при паразитарных болезнях, активно изучаются, но во многом неизвестны.
Приобретенный И. при паразитарных заболеваниях обеспечивается теми же типами иммунного ответа, которые характерны для инфекций. Защитное значение имеют антитела и клеточные факторы. Приобретенный И. может привести к полному освобождению от возбудителя (стерильный И.) или оказывать частичный эффект. Последний выражается в изгнании части популяции паразитов, обычно гельминтов, ограничении их репродуктивной способности, нарушении цикла развития и др. Нередко И. выражен только при наличии паразита в организме хозяина (нестерильный И., премуниция). Однако даже стерильный И. не всегда предотвращает повторное заражение.
Принципиальной особенностью приобретенного И. при паразитарных болезнях является его стадийная специфика, т.е. защитные факторы приобретенного И. избирательно специфичны для конкретной стадии развития возбудителя, а не для всей популяции паразита в организме хозяина. Цикл развития простейших и гельминтов — важнейшее биологическое приспособление паразитов к выживанию в неблагоприятных условиях внутренних сред иммунного хозяина. Приспособление паразита к выживанию в организме хозяина не исчерпывается циклом развития, а включает непосредственное воздействие на иммунную систему (иммуносупрессия. в т.ч. угнетение ответа на антигены возбудителя, нарушение процессов иммунологического надзора и распознавания, поликлональная активация В-лимфоцитов, антигенная мимикрия паразита и др.). Все явления, направленные на выживание паразита в организме иммунного хозяина, называются иммунологическим уклонением паразита.
Иммунопрофилактика при паразитарных болезнях находится в стадии разработки. В СССР успешно используют живую вакцину против зоонозного кожного лейшманиоза. Выбор антигена и конструирование вакцин осуществляют с учетом стадийной специфичности иммунитета. Так, предложены 3 противомалярийные вакцины: антиспорозоитная, предупреждающая заражение человека малярией; антимерозоитная, препятствующая развитию эритроцитарной шизогонии и клинических проявлений малярии; антигаметоцитная, дезорганизующая жизненный цикл возбудителя в переносчике и препятствующая его распространению.
Возрастные особенности иммунитета у детей. Во время беременности иммунная система матери проявляет толерантность к антигенным структурам плода, благодаря чему не происходит его отторжения. Это связано с наличием плацентарного барьера, с низкой плотностью антигенов гистосовместимости на клетках трофобласта, а также с супрессорной направленностью иммунных реакций в системе мать — плод. Женский организм, плацента и плод синтезируют ряд белковых факторов (альфа-фетопротеин, уромодулин, белки трофобласта) и небелковых соединений (эстрогены, прогестерон, простагландины Е1 и Е2), подавляющих реакции отторжения.
На 8-й неделе внутриутробного периода в организме плода начинается синтез комплемента, а между 8-й и 10-й неделями появляются В-лимфоциты. Вначале это незрелые клетки, содержащие в цитоплазме тяжелые цепи lgM, а позднее — В-лимфоциты, несущие lgM и lgD на мембранах. Плод синтезирует ограниченные количества lgG. Его содержание в крови до 17 нед. беременности составляет в среднем 0,1 г/л, к 32 нед. повышается до 0,4 г/л, а у новорожденных составляет около 11,0 г/л. Однако у доношенных этот уровень достигается не за счет синтеза, а в результате активного транспорта lgG через плаценту в самые последние недели беременности. Иммуноглобулины других классов через плаценту не передаются. В случае контакта с антигенами иммунная система плода отвечает увеличением синтеза lgM. Повышение концентрации lgM в пуповинной крови более 0,3 г/л свидетельствует об антигенной стимуляции плода или о внутриутробном инфицировании. Синтез lgE может возрасти во внутриутробном периоде у детей из семей с повышенным риском развития атонических заболеваний. В этих случаях повышенная концентрация lgE определяется уже в пуповинной крови. Синтез lgA и особенно его секреторной формы у плода крайне ограничен, и лишь к 3—4 месяцам жизни секреторные lgA регистрируются в слюне, носовой слизи и слезной жидкости ребенка.
Т-лимфоциты появляются у плода на 12-й неделе внутриутробного периода, после этого срока плод способен проявлять слабые реакции гиперчувствительности замедленного типа и отторжения трансплантата. Абсолютное число лимфоцитов в крови резко повышается на первой неделе жизни (физиологический лимфоцитоз, сохраняющийся на протяжении 5—6 лет).
У новорожденных реакции бластной трансформации лимфоцитов в ответ на митогены проявляются слабо, низка цитотоксическая активность Т-лимфоцитов и естественных киллеров. Кожные пробы при постановке реакций гиперчувствительности замедленного типа отрицательны. Супрессорная активность иммунной системы сохраняется по отношению к лимфоцитам матери на протяжении всего первого года жизни. Она направлена на предупреждение тяжелой иммунокомплексной патологии, неизбежной при контакте новорожденного с огромным числом антигенов.
Особенности регуляции межклеточного взаимодействия в иммунном ответе новорожденных связаны с ограниченной продукцией интерлейкинов и интерферонов. Физиологический дефицит интерферонов определяет недостаточный противовирусный И. в ранние периоды жизни. У новорожденных ослаблены процессы активации системы комплемента, особенно альтернативного пути. Для них характерны низкие концентрации в крови компонентов системы комплемента С1, С2, С3, С4 (в 2 раза ниже уровня взрослых), что определяет низкую опсоническую активность крови новорожденных.
Для плода и новорожденного характерны определенные особенности фагоцитарной системы. Спонтанная миграция и хемотаксис фагоцитов проявляются слабо, что отчасти связано с более высокой, чем у взрослых, жесткостью мембран клеток. Низка продукция фактора, тормозящего миграцию макрофагов. Фагоцитоз часто оказывается незавершенным.
Материнские антитела класса lgG защищают новорожденного от дифтерийного токсина, вирусов полиомиелита, кори, краснухи, от микробных инфекций, вызываемых менингококками и стрептококками, отчасти от столбняка. Клеточно-опосредованная защита от некоторых вирусов и грибков обеспечивается трансплацентарной передачей трансфер-фактора и отдельных интерлейкинов. Однако новорожденные и дети первых месяцев жизни проявляют повышенную чувствительность к респираторному синцитиальному вирусу, а также к вирусу энцефаломиокардита. Полупериод элиминации (или катаболизма) материнских антител класса lgG — 21—23 сут. При крайне ограниченном собственном синтезе lgG у ребенка это ведет к существенному снижению концентрации lgG между 2-м и 6-м месяцами жизни.
Воздействие различных антигенов на первом году жизни вызывает первичный иммунный ответ, проявляющийся повышением синтеза антител класса lgM. Постепенно происходит переключение гуморальных реакций иммунного ответа на синтез антител класса lgG. К концу первого года жизни в крови имеется примерно 50—60% количества lgG и только около 30% lgA от средних значений у взрослых. К концу второго года жизни содержание lgM и lgG составляет уже около 80% значений взрослых, а lgA — около 40%. Содержание lgM достигает уровня такового у взрослых к 3—5 годам., Секреторные иммуноглобулины класса А. и секреторный фрагмент Sc полностью отсутствуют у новорожденных и появляются в секретах после 3-го месяца жизни. Но на протяжении первых четырех лет жизни их концентрация в слюне, назальных секретах в 4—5 раз ниже, чем у взрослых. Это дает основание говорить о недостаточности в первые годы жизни системы местного И. Недостаточность lgA в кишечнике предопределяет высокую частоту пищевой аллергии.
Лимфоидные органы ребенка раннего возраста отвечают на инфекционные агенты значительной гиперплазией, которая сохраняется длительное время после преодоления инфекции. Лимфаденопатия сопровождает практически любой воспалительный процесс. При конституциональном лимфатизме реакции со стороны лимфатических узлов, как правило, сильно выражены. В лимфатических узлах у детей могут длительно сохраняться микроорганизмы. При персистирующих вирусных инфекциях, вызванных цитомегаловирусом, вирусом Эпстайна — Барр, или инфекциях, обусловленных токсоплазмами, возбудителями туберкулеза, наряду с лимфатическими узлами нередко увеличена и селезенка. Дети, родившиеся с внутриутробными вирусными инфекциями, длительно рассеивают их возбудителей, поражающих чувствительных к ним сверстников и взрослых.
В процессе роста ребенка существуют определенные критические периоды развития иммунобиологической реактивности, когда на антигенные воздействия иммунная система дает неадекватный или даже парадоксальный ответ: он может оказаться недостаточным для защиты либо чрезмерным гиперергическим (аллергическим) Первый такой период охватывает первые 29 дней жизни (период новорожденности). На 5—7-е сутки происходит первый перекрест в лейкоцитарной формуле крови, нейтрофилез сменяется относительным и абсолютным лимфоцитозом. Пассивный гуморальный И. обеспечивается в основном материнскими антителами. Характерны незавершенность фагоцитоза, низкая функциональная активность системы комплемента и опсонизация микробов. Хемотаксис и миграция фагоцитов ограничены. Ребенок проявляет слабую резистентность к условно-патогенной, гноеродной, грамотрицательной микрофлоре, некоторым вирусам. Проявляется склонность к генерализации микробновоспалительного процесса, септическим состояниям.
Второй критический период (3—6 мес.), характеризуется ослаблением пассивного гуморального И. в связи с элиминацией материнских антител. Сохраняется супрессорная направленность иммунных реакций при выраженном лимфоцитоза в крови. На большинство антигенов развивается первичный иммунный ответ с преимущественным синтезом антител класса lgM, не оставляющим иммунологической памяти. Такой тип иммунного ответа наблюдается при вакцинации против столбняка, дифтерии, коклюша, полиомиелита, кори, и только после 2—3 ревакцинаций формируется вторичный иммунный ответ с образованием антител класса lgG и стойкой иммунологической памяти. Вакцинация может не повлечь иммунного ответа, если в крови детей еще циркулируют материнские антитела или дети по показаниям получали препараты крови, гамма-глобулин, плазму. Дети сохраняют очень высокую чувствительность к респираторному синцитиальному вирусу, вирусам парагриппа, аденовирусам. Вирус гепатита В редко вызывает желтушные формы болезни, чаще акродерматит (синдром Джанотти). Атипично протекают коклюш, корь, которые не сопровождаются развитием И. Проявляется недостаточность системы местного И. (повторные острые респираторные вирусные инфекции); выявляются многие наследственные иммунодефициты; нарастает частота пищевой аллергии.
Третий критический период приходится на второй год жизни, когда значительно расширяются контакты ребенка с внешним миром. Сохраняется первичный характер иммунного ответа на многие антигены, однако синтез антител класса lgM уже переключается на образование антител класса lgG. В этот период дифференцируются клоны В-лимфоцитов, синтезирующие субклассы lgGI и lgG3. Однако синтез субклассов lgG2 и lgG4 запаздывает. Процесс переключения синтеза антител от lgM на lgG находится под контролем особых генов. Супрессорная направленность иммунной системы сменяется преобладанием хелперной функции по отношению к клонам В-лимфоцитов, синтезирующим lgM. Система местного И. остается неразвитой, дети по-прежнему чувствительны к вирусным инфекциям. Полисахаридные антигены отдельных серотипов пневмококка вообще не индуцируют гуморального М., он отсутствует по отношению к палочке инфлюэнцы у 30% детей данного возраста. В этот период проявляются многие малые (минорные) аномалии И., иммунопатологические диатезы (атопия), иммунокомплексные болезни. Дети особенно склонны к повторным вирусным и микробно-воспалительным заболеваниям органов дыхания, ЛОР-органов. Проявления иммунопатологического диатеза (атопические реакции, аутоиммунный диатез) четко не дифференцируются.
Четвертый критический период — 4—6-й годы жизни. В этом возрасте наблюдается второй перекрест в содержании форменных элементов крови. Средняя концентрация lgG и lgM в крови соответствует аналогичным показателям у взрослых, уровень lgA в плазме еще не достигает окончательных значений, но значительно повышается содержание lgE. Система местного И. у большинства детей еще не завершает своего развития. Данный период характеризуется высокой частотой атонических, иммунокомплексных заболеваний, проявлением поздних иммунодефицитов. Формируются многие хронические заболевания полигенной природы.
Пятый критический период — подростковый возраст (у девочек с 12—13 лет, у мальчиков с 14—15 лет). Пубертатный скачок роста сочетается с уменьшением массы лимфоидных органов. Стимуляция секреции половых гормонов (андрогенов) ведет к подавлению клеточного звена И. и стимуляции его гуморального звена. Содержание lgE в крови снижается. Окончательно формируются типы иммунного ответа (сильный и слабый). Нарастает воздействие на иммунную систему экзогенных факторов, например курения. Отмечается новый подъем частоты хронических, воспалительных, аутоиммунных и лимфопролиферативных заболеваний Тяжесть атопических болезней (бронхиальной астмы и др.) у многих детей ослабевает.
Отклонения в развитии иммунной системы чаще всего проявляются как поздний иммунологический старт. Его причинами служат следующие факторы: низкая масса тела при рождении; внутриутробное инфицирование лимфотропными ДНК-вирусами (цитомегалии, Эпстайна — Барр, герпеса); гипербилирубинемия; малые наследственные аномалии И. (дефицит lgA, отдельных субклассов lgG, отдельных компонентов системы комплемента, интерферона, дефекты хемотаксиса фагоцитов, опсонизации и др.): экзогенные, в т.ч. ятрогенные, влияния (введение гамма-глобулина без достаточных на то оснований, игнорирование профилактики рахита, длительное применение кортикостероидов, воздействия диоксинов и фенолов атмосферного воздуха и др.). Повторные инфекции (острые респираторные вирусные заболевания и др.) также вызывают вторичную депрессию иммунной системы. При ВИЧ-инфекции резко угнетается хелперная функция лимфоцитов и становление иммунной системы в целом происходит на фоне дистрофии и вялотекущих воспалительных процессов в легких, кишечнике, коже. Следует иметь в виду, что ряд лимфоцитотропных вирусов у детей может вызвать сходное состояние, получившее название псевдо-ВИЧ-синдрома (например, врожденная Эпстайна — Барр вирусная инфекция).
В критические периоды становления иммунной системы особенно часто проявляются наследственные вариации силы иммунного ответа и иммунопатологические диатезы (атопический, лимфатико-гипоиммунный, аутоиммунный). Наиболее тяжелые состояния у детей развиваются при классических моногенных иммунодефицитах (агаммаглобулинемия, аплазия вилочковой железы, тяжелые комбинированные формы иммунной недостаточности и др.), однако они встречаются редко, отличаясь крайне неблагоприятным прогнозом уже в раннем возрасте (см. <<Иммунопатология>>).
Иммунитет в пожилом и старческом возрасте. При старении эффективность функционирования иммунной системы, заключающаяся в поддержании постоянства антигенного состава организма, уменьшается. Процесс распознавания собственных и чужеродных антигенов становится менее точным, интенсивность иммунных реакций снижается. Это приводит к появлению характерных для старения иммунопатологических синдромов: иммунного дефицита, аутоиммунности, повышения уровня циркулирующих иммунных комплексов, учащения случаев доброкачественных моноклональных гаммапатий. Иммунный дефицит проявляется в снижении первичного и вторичного (анамнестического) иммунного ответа как клеточного, так и гуморального. Следствием этого является снижение эффекта от иммунизации (например, при вакцинации против гриппа или столбняка), падение титров антител в крови ниже защитного уровня, уменьшение клеточных иммунных реакций, определяемых по активности цитотоксических лимфоцитов или кожным тестам замедленной гиперчувствительности.
Аутоиммунность выражается в повышении как частоты обнаружения, так и уровней антител и аутосенсибилизированных лимфоцитов, реагирующих с разнообразными антигенами собственного организма. Аутореактивность обычно не имеет связи с перенесенными заболеваниями и состоянием здоровья в момент обследования и не проявляется клиническими признаками, характерными для классических аутоиммунных болезней. Если же аутоиммунное заболевание (например, системная красная волчанка, дерматомиозит) возникает в старческом возрасте, то оно протекает более доброкачественно, легче достигается ремиссия под влиянием терапии. Обнаружение аутоантител или отсутствие кожных реакций на распространенные антигены у пациентов старше 80 лет представляется неблагоприятным прогностическим признаком.
Характерное для старения повышение уровня циркулирующих иммунных комплексов выражено в гораздо большей степени при распространенном атеросклерозе и некоторых других формах патологии, присущих старости. Так, моноклональные гаммапатии, не связанные с лимфопролиферативными заболеваниями, в возрасте свыше 85 лет могут встречаться примерно в 20% случаев. Однако развитие лимфопролиферативных заболеваний в старческом возрасте также значительно учащается.
Различные звенья иммунной реакции при старении нарушаются в разной степени. Наибольшим изменениям подвержено Т-клеточное звено И., что проявляется в снижении общего числа зрелых Т-лимфоцитов в крови, утрате способности иммунного ответа на поликлональные Т-клеточные активаторы (фитогемагглютинин, конканавалин А), снижении клеточного и гуморального ответа на Т-зависимые антигены. Это сопровождается уменьшением количества Т-хелперов, снижением выработки интерлейкина-2 и способности лимфоцитов реагировать на него, падением антиген-специфической и подъемом антиген-неспецифической супрессорной активности. Уменьшается выработка антител классов lgG и lgA при одновременном увеличении иммуноглобулинов данных классов в крови, преобладает продукция низкоаффинных антител класса lgM. Снижение выработки антител и других опсонизирующих факторов сыворотки ведет к депрессии фагоцитарной активности нейтрофилов и макрофагов, которые вырабатывают меньше интерлейкина-1. Лимфоциты становятся более чувствительными к ингибирующему действию простагландинов. Данные о возрастных изменениях естественных киллеров противоречивы.
В изменении иммунной системы при старении центральная роль принадлежит возрастной инволюции вилочковой железы (<<Вилочковая железа>>), нарушению созревания в ней Т-лимфоцитов, уменьшению выработки тимических гормонов, ряд которых исчезает из крови после 40 лет. Звенья иммунной системы нарушаются в разной степени. С этим могут быть связаны прямо или опосредованно многие заболевания, развивающиеся преимущественно в пожилом возрасте. Повышается чувствительность к инфекции, со склонностью к более тяжелому и затяжному течению болезни, с частым переходом в хронические формы, наблюдается более частое внутрибольничное заражение пожилых пациентов, в т.ч. условно-патогенной микрофлорой. Часто возникают осложнения в виде пневмоний или инфекции мочевых путей. Снижение И. создает благоприятные условия для роста опухолей. Выявляется связь между повышением частоты аутоиммунных реакций, уровня циркулирующих иммунных комплексов и многими формами эндокринных и сосудистых заболеваний, патологией опорно-двигательного аппарата. Среди аллергических болезней уменьшается удельный вес атопий, но увеличивается частота инфекционных и химических форм аллергии (в т.ч. лекарственной), часто со склонностью к генерализованным реакциям типа анафилактического шока.
Профилактика нарушений И. в старости заключается в проведении общеукрепляющих мероприятий, а также в коррекции питания, углеводного и жирового обмена. Эффективность мер специфической профилактики, например иммунизации, нуждается в постоянном контроле. Что касается назначения иммуномодуляторов, то показания к их применению определяют в каждом конкретном случае с учетом иммунного статуса.
Библиогр.: Бутенко Г.М. и Войтенко В.П. Генетические и иммунологические механизмы возрастной патологии, Киев, 1983; Иммунитет и старение, под ред. А.В. Токаря, Киев, 1987; Иммунология, под ред. У. Пола, пер. с англ., т. 1—2, М., 1987—1988; Иммунология и старение, под ред. Т. Макинодана и Э. Юниса, пер. с англ., М., 1980; Кашкин К.П. и Караев З.О. Иммунная реактивность организма и антибиотическая терапия, Л., 1984; Клиническая иммунология я аллергология, под ред. Л. Йегера, пер. с нем., т. 1—3, М., 1986; Кульберг А.Я. Регуляция иммунного ответа, М., 1986; Общая и частная вирусология, под ред. В.М. Жданова и С.Я. Гайдамович, т. 1, с. 363, М., 1982; Петров Р.В. Иммунология, М., 1987; Стефани Д.В. и Вельтищев Ю.Е. Клиническая иммунология детского возраста, Л., 1977.
II
Иммунитет (лат. immunitas освобождение, избавление от чего-либо)
невосприимчивость организма к инфекционным и неинфекционным агентам и веществам, обладающим антигенными свойствами.
Иммунитет адоптивный — И., обеспечиваемый клетками костного мозга и вилочковой железы, трансплантированными при иммунологической недостаточности, например у лиц, подвергшихся воздействию ионизирующего излучения.
Иммунитет активный — И., возникающий в результате иммунного ответа организма на введение антигена.
Иммунитет антиаллергический (устар.) — термин, которым прежде обозначали снижение чувствительности организма к аллергену, объясняя это явление включением иммунных механизмов, блокирующих аллерген.
Иммунитет антибактериальный — И. в отношении бактерий.
Иммунитет антитоксический — И. в отношении токсинов, продуцируемых микроорганизмами, растениями, животными.
Иммунитет видовой — см. Иммунитет наследственный.
Иммунитет врождённый — см. Иммунитет наследственный.
Иммунитет гуморальный — И., обусловленный наличием определенных биологически активных веществ во внутренней среде организма (антител и др.).
Иммунитет естественный — см. Иммунитет наследственный.
Иммунитет инфекционный — см. Иммунитет нестерильный.
Иммунитет клеточный — И., обусловленный активностью определенных клеток (фагоцитов и др.).
Иммунитет конституциональный — см. Иммунитет наследственный.
Иммунитет материнский — пассивный И., обусловленный наличием антител, переданных от матери через плаценту или с молозивом.
Иммунитет наследственный (син.: И. видовой, И. врожденный, И. естественный, И. конституциональный, резистентность естественная) — И., присущий представителям данного биологического вида и передающийся по наследству.
Иммунитет нестерильный (син. И. инфекционный) — И., обусловленный наличием в организме живого инфекционного агента и утрачиваемый при удалении последнего; наблюдается при туберкулезе, бруцеллезе и некоторых гельминтозах.
Иммунитет пассивный — И., возникающий при передаче антител в форме антисыворотки или иммуноглобулинов от иммунизированного донора, а также от матери через плаценту или с молозивом.
Иммунитет поствакцинальный (син. И. прививочный) — И., возникающий в результате активной иммунизации.
Иммунитет прививочный — см. Иммунитет поствакцинальный.
Иммунитет приобретённый — И., возникновение которого связано с перенесенным инфекционным заболеванием, иммунизацией или передачей антител от матери.
Иммунитет противовирусный — И. в отношении вирусов.
Иммунитет противоопухолевый — И. в отношении опухолевых клеток.
Иммунитет стерильный — И., обусловленный вакцинацией или перенесенным инфекционным заболеванием и сохраняющийся на определенный период после элиминации возбудителя из организма.
Иммунитет трансплантационный — И. в отношении тканей и органов, пересаженных от другой особи; является основной причиной отторжения трансплантатов.
Орфографический словарь Лопатина
иммунит`ет, иммунит`ет, -а
Словарь Ожегова
ИММУНИТ’ЕТ, -а, муж. (спец.).
1. Невосприимчивость к какому-н. инфекционному заболеванию. И. к кори. Выработать и. к чему-н. или против чего-н. (также перен.: об устойчивой реакции против чего-н.).
2. Предоставленное кому-н. исключительное право не подчиняться нек-рым общим законам. Дипломатический и. (неприкосновенность личности, служебных помещений, жилища и собственности дипломатов). Депутатский и.
прил. иммунный, -ая, -ое (к 1 знач.) и иммунитетный, -ая, -ое. Иммунная реакция организма.
Словарь Ушакова
ИММУНИТ’ЕТ, иммунтета, ·муж. (от ·лат. immunitas - освобождение от повинностей) (·книж. ).
1. Невосприимчивость, способность организма противостоять заразным заболеваниям (мед.). Иммунитет к скарлатине. Иммунитет к животным ядам.
2. Изъятие кого-нибудь из-под действия некоторых законов (юр.). Хотя в буржуазных странах члены парламента, пользуясь иммунитетом, не могут быть арестованы, депутатов-коммунистов всё-таки часто арестовывают.
Толковый словарь Ефремовой
[иммунитет]
1. м.
1) Невосприимчивость организма к возбудителям инфекционных заболеваний, действию ядов и некоторых других повреждающих факторов.
2) перен. Способность противостоять чему-л.
2. м.
Совокупность прав и привилегий, предоставляемых определенному кругу должностных лиц.
Словарь управления
к чему и против чего. Иммунитет к оспе. Когда вы сумеете выработать свой характер, когда вы ясно определите свое миросозерцание... тогда можно будет сказать, что одновременно вы приобрели надежный иммунитет против всяких жизненных уколов, разочарований и невзгод (М. И. Калинин).
Большой юридический словарь
(англ. immunity, от лат. immunitas - освобождение от чего-либо) - общеправовой термин, означающий освобождение определенного круга субъектов права из-под действия общих норм. В международном праве известны, в частности: иммунитет государства, иммунитет военных кораблей, иммунитет дипломатический, иммунитет морских государственных торговых судов. В конституционном праве привилегия должностных лиц некоторых категорий, заключающаяся в их неприкосновенности. Различаются, в частности, иммунитет парламентский (депутатский), иммунитет президентский и иммунитет судейский. В финансовом праве известно понятие налогового иммунитета.
Энциклопедия Юриста
(англ. immunity от лат. immunitas - освобождение от чего-либо)
общеправовой термин, означающий освобождение определенного круга субъектов права из-под действия общих правовых норм. В международном праве известны, в частности, иммунитет государства, иммунитет военных кораблей, иммунитет дипломатический, консульский иммунитет. В конституционном праве - привилегия некоторых категорий должностных лиц государства, заключающаяся в их неприкосновенности. Различаются, в частности, иммунитет парламентский (депутатский), иммунитет президентский и иммунитет судейский. В финансовом праве известно понятие налогового иммунитета.
Научнотехнический Энциклопедический Словарь
ИММУНИТЕТ, сопротивление болезнетворным микроорганизмам. Может быть приобретен естественным путем, как, например, от инфекций, которые стимулируют организм к выработке защитных АНТИТЕЛ (новорожденный младенец имеет некоторые АНТИТЕЛА от матери). Также может быть получен путем ИММУНИЗАЦИИ.
Если вы желаете блеснуть знаниями в беседе или привести аргумент в споре, то можете использовать ссылку:

будет выглядеть так: ИММУНИТЕТ


будет выглядеть так: Что такое ИММУНИТЕТ